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Abstract 

Herpes Simplex Virus (HSV) type I causes cold sores but is also associated with severe 

outcomes such as encephalitis and blindness. The primary lytic HSV-1 infection in the skin 

and peripheral nervous system (PNS) is limited to around a week, but latent virus persists 

in neurons, from which it can reactivate periodically. A black and white view of lytic versus 

latent infection persists in the HSV literature. Somewhat paradoxically, there remains 

concern that ‘true’ latent infection cannot be assumed to occur in animal models within a 

month of primary infection. In this thesis, the ROSA26R/Cre mouse model was used that 

allows historic assessment of virus activity. In this model, β-galactosidase (β-gal) 

expression is switched on permanently in any cells that had experienced HSV-1-driven Cre 

recombinase expression. Further, placing the Cre gene under the control of various HSV-1 

promoters allowed the number of cells that have experienced different types of viral 

activity to be determined, from entry of a virus genome to expression of lytic genes.  

This historical analysis found substantial lytic gene expression and spread of virus occurs 

in the PNS for at least five days beyond the peak of infectious virus load. This suggests that 

the period immediately after the bulk of the lytic infection is quelled remains highly 

dynamic. Further, there was continued accumulation in β-gal marked cells in mice infected 

with viruses that express Cre from the gB and infected cell protein (ICP) 6 promoters. 

Therefore, transient, likely low level, promoter activity does occur during latency, which 

can lead to protein production. This was not observed for the ICP0 promoter, indicating 

that expression from various lytic gene promoters differs during this time. 

More striking, when expression of Cre was directed by the promoter for ICP47, a viral gene 

that functions to inhibit adaptive immune responses, the number of β-gal-expressing 

neurons continued to rise sharply until day 20 after infection. Further, β-gal marked cells 

continued to accumulate throughout latency, suggesting that ICP47 may function during 

latency to facilitate evasion of the immune response, and potentially reactivation. 

However, attempts to overcome the effect of ICP47 expression by increasing antigen 

presentation on infected neurons did not have a substantial impact on the establishment 

or maintenance of latency. 

In summary, this thesis has provided insights into the dynamic interaction between viral 

lytic gene expression and the immune response during latency, challenging the traditional 

paradigm of an almost-quiescent form of HSV-1 latency. The results presented in this 

thesis further our understanding HSV-1 and α-herpesvirus latency, and with further 

research will hopefully lead to better therapeutic outcomes. 
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Abbreviations 

6-FAM 6-carboxylfluorescein 

acH3K9 acetylation of lysine 9 of histone 3 

acH3K14 acetylation of lysine 14 of histone 3 

α Immediate Early 

ANOVA A one-way analysis of variance 

ANU the Australian National University 

APC Antigen Presenting Cell 

APC-Cy7 Allophycocyanin-cyanine 7 

APS Ammonium Persulphate 

BAC Bacterial Artificial Chromosome 

β Early 

β-gal β-galactosidase 

BGH Bovine Growth Hormone 

BV421 Brilliant Violet 421 

CAT Chloramphenicol Acetyltransferase 

CENP Centromere Protein 

ChIP Chromatin Immunoprecipitation 

CMC Carboxymethylcellulose 

CMV Cytomegalovirus 

CMV IE Cytomegalovirus Immediate-Early 

CNS Central Nervous System 

CoREST Corepressor element-1 silencing transcription factor 

CPE Cytopathic Effect 

CreER Cre that has been fused to mutated hormone-binding domains of 

the Estrogen Receptor 

CRISPR Clustered Regularly Spaced Palindromic Repeats 

CT Threshold Cycle 

CTCF CCCTC-binding factor 

CTF CCAAT Binding Factor 

CXA Contextual analysis 

DAS Downstream Activator Sequence 

DDAO-

galactosidase 

9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl β-D-

galactopyranoside 

DMEM Dulbecco’s Modified Eagle Medium 

DMF N, N Dimethylformamide 
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DMSO Dimethyl sulfoxide 

dNTP deoxynucleotide triphosphate 

DRG Dorsal Root Ganglia 

DTT Dithioreitol 

eGC eGFP/Cre fusion protein 

ECMV  Encephalomyocarditis Virus 

eGFP enhanced Green Fluorescent Protein 

ER Endoplasmic Reticulum 

FBS Foetal Bovine Serum 

FITC Fluorescein Isothiocyanate 

γ1 Leaky late 

γ2 True late 

gB glycoprotein B 

gC glycoprotein C 

gE glycoprotein E 

GFP Green Fluorescent Protein 

gzmB granzyme B 

gRNA guide RNA 

HCF-1 Host Cell Factor 1 

HDAC Histone Deacetylase 

HIV Human Immunodeficiency Virus 

HP1 Heterochromatin binding Protein 1 

HSV Herpes Simplex Virus 

I Internal 

ICP Infected Cell Protein 

IFN Interferon 

IL Interleukin 

INR Initiator  

IRES Internal Ribosome Entry Site 

IRF1 Interferon Regulatory Factor 1 

ISH In Situ Hybridisation 

JCSMR John Curtin School of Medical Research 

LAT Latency Associated Transcript 

LB Luria-Bertani 

LCM Laser Cutting Microdissection 

LSD1 Lysine Specific Demethylase 1 
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MCS Multiple Cloning Site 

MEM Minimum Essential Medium 

metH3K4 methylation of lysine 4 of histone 3 

metH3K9 methylation of lysine 9 of histone 3 

metH3K27 methylation of lysine 27 of histone 3 
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MHC Major Histocompatibility Complex 

miRNA microRNA 

MOI Multiplicity Of Infection 

NGF Neuron Growth Factor 

NK Natural Killer 

OCT-1 Octamer binding protein 1 

OHT 4-hydroxytamoxifen 
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opm oscillations per minute 

OriS Origin of Replication in the Short region of the HSV-1 genome 

p.i. post infection 

PAM Protospacer Adjacent Motif 

PBS Phosphate Buffered Saline 

PE Phycoerythrin 

PE-Cy7 Phycoerythrin-cyanine 7 

PFA Paraformaldehyde 

PNS Peripheral Nervous System 

qPCR quantitative PCR 

qRT-PCR quantitative Reverse Transcriptase-Polymerase Chain Reaction 

RAG Recombination Activating Genes 

REST RE1-Silencing Transcription factor 

RISC RNA Induced Silencing Complex 

RL Long Repeat 

rNTP ribonucleotide triphosphate 

ROSA26R B6.129S4-Gt(ROSA)26Sortm1So/J 

RS Short Repeat 

RT Reverse Transcriptase 

SDS Sodium Dodecyl Sulphate 

SOC Super Optimal broth with Catabolite repressor 

SP1 GC bp-rich motifs for Stimulator Protein 
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SV40 Simian Virus 40 

T Terminal 

TAE Tris-Acetate-EDTA 

TAP Transporter associated with Antigen Presentation 

TBE Tris-Borate-EDTA 

TCR T Cell Receptor 

TEMED N-N-N’-N’-tetramethylethylenediamine 
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VRE VP16 Responsiveness Element 

VZV Varicella Zoster Virus 

X-gal 5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside 
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1.1 Overview with an introduction to Herpes Simplex Virus 

HSV is a large double-stranded DNA virus of the family Herpesviridae. All herpesviruses 

share three distinct characteristics. Firstly, they all have the same typical particle 

morphology (Section 1.1.1). Secondly, all possess a large double-stranded DNA genome, 

ranging from approximately 125 to 235 kb in size (Section 1.1.2; Davison et al., 2009; 

Roizmann et al., 1992). Finally, all have the ability to produce disease following productive 

infection, as well as enter a latent phase in some cells of the infected natural host 

characterised by an absence of detectable infectious virus. The virus can then periodically 

reactivate from this reservoir to re-enter the lytic program of infection (Section 1.1.3; 

Stevens and Cook, 1971). It is this characteristic that is the defining quality of HSV-1, but 

despite decades of research, the role of virus and host factors that dictate the progression 

of infection remains poorly defined. This thesis will attempt to investigate the 

establishment of the latent HSV-1 infection and the extent to which this is dictated by the 

productive infection and its associated gene expression. It will also investigate the limited 

viral gene expression that may take place during latency and consider a more dynamic 

model of HSV-1 latency. 

1.1.1 The mammalian herpesviruses 

Mammalian herpesviruses can be classified into α, β and γ subgroups (Davison et al., 

2009). This is based primarily on biological characteristics, such as host range, spread in 

culture, the speed of their reproductive cycle and, most importantly, the primary site in 

which latency is established (Roizman et al., 1981; Roizmann et al., 1992). In simplistic 

terms, the α herpesviruses primarily establish latency in sensory neurons, while the β 

herpesviruses establish latency in cells of the monocyte lineage and the γ herpesviruses 

establish latency in T or B cells (Davison, 2007). At least seven distinct human 

herpesviruses have currently been identified and sequenced (Baer et al., 1984; Cha et al., 

1996; Davison and Scott, 1986; Dolan et al., 1998; Gompels et al., 1995; McGeoch et al., 

1986; Nicholas, 1996). Three of these are classified as α herpesviruses: varicella-zoster 

virus (VZV), HSV-1 and HSV-2 (Subak-Sharpe and Dargan, 1998). HSV-1 and HSV-2 are 

closely related, with approximately 80% genetic homology within coding regions (Dolan et 

al., 1998). 

1.1.2 Epidemiology and disease resulting from HSV-1 infection 

HSV-1 is a ubiquitous human pathogen, with seropositivity of 76% in Australia 

(Cunningham et al., 2006). Most recent estimates suggest that the global prevalence of 

HSV-1 is approximately 90%, and is much greater than that of HSV-2 (as reviewed by 
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Smith and Robinson, 2002). HSV-1 seropositivity varies with age, sex, geographical 

location (rural versus metropolitan) and Indigenous status (Cunningham et al., 2006; 

Smith and Robinson, 2002). 

Both HSV-1 and HSV-2 infect primarily through mucosal surfaces or damaged skin. In the 

majority of cases, HSV-1 is acquired via the oro-labial route, although the incidence of 

genital herpes as a result of HSV-1 infection is rising in many developed countries, 

including Australia (Tran et al., 2004). Both the primary HSV-1 infection and any 

subsequence episodes of reactivation can be either symptomatic or asymptomatic, with 

this being at least partially dependent on the immunological status of the host (Knaup et 

al., 2000; as reviewed by Knipe and Cliffe, 2008). Generally, it has been estimated that 

around one third of those who are seropositive will experience at least one symptomatic 

HSV-1 episode (Whitley et al., 1998). 

The majority of HSV-1 infections are mild or asymptomatic but for others they can be 

highly debilitating (Knaup et al., 2000). HSV-1 is responsible for a variety of pathological 

conditions, including herpes labialis (commonly known as cold sores), eczema herpeticum, 

genital lesions, herpes simplex encephalitis and herpes keratitis (Bader et al., 1978; 

McGrath et al., 1997; Tran et al., 2004; Wollenberg et al., 2003; Young et al., 2010). The 

recurrent mucocutaneous infections associated with HSV are painful and account for the 

majority of health care utilization, though they are not the most serious manifestation of 

infection (Shulman, 2005). Primary HSV infection can also be devastating in newborns 

(Corey and Wald, 2009) and immunocompromised patients, where the virus can be 

systemically disseminated and cause fatal infection. However, prophylactic antiviral 

therapy is effective in relieving symptoms in those infected with Human 

Immunodeficiency Virus (HIV), cancer patients and in patients who have had a bone 

marrow transplant (Arduino and Porter, 2006) .  

Due to the high prevalence of HSV, rare complications of primary HSV-1 infection and 

reactivation have a considerable medical burden (Khetsuriani et al., 2002). For example, 

herpes simplex encephalitis is the most common cause of fatal viral encephalitis, and is 

associated with 70% mortality in untreated patients. Even in patients that receive 

appropriate treatment, there is a 20 - 30% incidence of mortality, and a high incidence of 

severe and permanent neurological sequelae (McGrath et al., 1997). Similarly, ocular 

infection with HSV-1, including herpes simplex keratitis, is also extremely debilitating, and 

is the most common cause of corneal blindness. This visual loss is not due to the primary 

HSV infection, but to the corneal thinning, scarring and neovascularisation associated with 

recurrent disease (as reviewed by Liesegang, 2001). Finally, neonatal HSV infection is 
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associated with a 60% incidence of mortality in untreated cases, but even with early 

treatment results in considerable disability amongst the survivors. Most infections result 

from exposure in the genital tract during delivery, and are usually attributable to HSV-1 

infection (Corey and Wald, 2009; Jones et al., 2014). The incidence of genital herpes as a 

result of HSV-1 infection is rising (Tran et al., 2004), which has implications for the 

prevention and treatment of neonatal HSV infection. 

1.1.3 HSV-1 virion structure and composition 

 The structure of the HSV-1 virion has been well-characterised, with the capsid structure 

being resolved to 8.5Å resolution by electron cryomicroscopy and approximately 7 nm 

resolution for the structure of the virion (Grünewald et al., 2003; Zhou et al., 2000b). The 

double-stranded DNA genome is found in the centre of the virion as a single densely coiled 

molecule in a liquid crystalline arrangement (Booy et al., 1991). The folded DNA molecule 

is enclosed in an icosahedral capsid. This nucleocapsid is composed of 162 capsomers and 

is approximately 100 nm in diameter (Schrag et al., 1989; Zhou et al., 2000b). Further, the 

nucleocapsid is composed of at least five different HSV structural proteins (Gibson and 

Roizman, 1972), and is embedded within the tegument. The tegument is an amorphous, 

proteinaceous structure (Grünewald et al., 2003) that is surrounded by the viral envelope 

(van Genderen et al., 1994). The viral envelope is a lipid bilayer membrane of host origin 

that contains eleven different HSV-1 glycoproteins (Grünewald et al., 2003). More than 

50% of recognized HSV-1 genes encode proteins that make up the virion structure (Subak-

Sharpe and Dargan, 1998). 

1.1.4 The HSV-1 genome 

The HSV-1 genome is approximately 152 kb long, and has a G + C content of approximately 

68.3%. It is generally accepted that the genome circularises after infection and is 

maintained during latency in a non-replicating, circular episomal form (Efstathiou et al., 

1986; Garber et al., 1993; Mellerick and Fraser, 1987; Rock and Fraser, 1985; Strang and 

Stow, 2005). Conceptually, the genome is usually divided into two segments, designated 

unique long (UL) and unique short (US; Figure 1-1). Each segment consists of a unique 

sequence which is flanked by a pair of inverted repeats, designated as either terminal (T), 

located at the end of the genome, or internal (I), located at the joint region of the genome. 

Both the long repeat (RL) and short repeat (RS) sequences are distinct (Wadsworth et al., 

1975). There is also a terminal redundancy of approximately 400 bp, known as the “a” 

sequence. One or more copies of this sequence are located internally at the join between 

the L and S sequences in the opposite orientation to the terminal “a” sequences, and are 

known as the “a’ ” sequences (Wagner and Summers, 1978).  
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Figure 1-1. Overview of HSV-1 genome structure. The HSV-1 genome can be divided 

into two unique linked segments designated UL and US. UL and US are flanked by a pair of 

inverted repeats, designated TRL and IRL, and IRS and TRS, respectively. The “a” segment 

is a 400 bp terminal redundancy found at the genome termini, while the “a’ ” sequence 

is an inverted repeat of this sequence found between the two genome segments. 
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Preparations of HSV-1 DNA consist of a mixture of four possible sequence orientation 

isomers that differ in the relative orientation of the UL and US sequences (Delius and 

Clements, 1976). Additionally, as there is a range of copies of each of the repeat regions, 

the size of the genome can be variable. However, one isomer has been designated as the 

prototype sequence for the purpose of genomic map representations (Figure 1-1; 

McGeoch et al., 1988).  

More than 74 genes are recognized in the HSV-1 genome, which encode at least 70 distinct 

proteins. UL encodes at least 57 genes, and 56 proteins (McGeoch et al., 1988). Likewise, 

the US segment contains at least 12 genes (Watson et al., 2012). Virtually all of those genes 

identified are unspliced (Roizman, 1982). The most notable examples of HSV-1 genes 

which are spliced are RL2 (encoding the protein ICP0), US1 (encoding ICP22), US12 

(encoding ICP47) and the latency associated transcript (LAT; as reveiwed by Rajčáni et al., 

2004). 

1.1.5 The HSV-1 life cycle: lytic infection, latency and reactivation 

The HSV-1 life cycle is very complex, so for conceptual reasons, it is often divided into 

three distinct phases: lytic infection, latency and reactivation (Figure 1-2). However, to a 

certain extent these three stages represent a biological continuum (Steiner, 1996).  

The primary, lytic infection with HSV-1 is usually initiated in the mucosal membranes or 

skin. Replication of the virus occurs in the skin, and subsequent death of the host cells 

occurs (Pellet and Roizman, 2013). The virus quickly gains access to innervating sensory 

nerves and travels to the cell bodies of the primary sensory neurons via retrograde axonal 

transport (Antinone and Smith, 2010; Cook and Stevens, 1973). These neurons are 

collected in the sensory ganglia of the PNS. Within the ganglia, the virus replicates briefly 

and limited spread of the virus to other neurons may occur. From here virus can also 

travel back to the skin, infecting additional cells and broadening the geographic area of the 

initial site of infection. This results in the exposure of additional innervating axonal 

endings to virus and infection of additional neurons in the ganglia. In this way, viral 

replication in the ganglia influences the number of neurons infected by both the spread of 

virus within the PNS and expansion of the area of the surface infection (Shimeld et al., 

2001; Simmons and Nash, 1984; Thompson and Sawtell, 2000). Infection will continue at 

the skin and PNS until it is curtailed by the onset of an adaptive immune response (Nash et 

al., 1987; Simmons and Nash, 1985; Simmons and Tscharke, 1992; Van Lint et al., 2004).  

A portion of neurons that receive the HSV genome survive to establish latency (Bastian et 

al., 1972; Cook et al., 1974; Shimeld et al., 2001; Stevens and Cook, 1971). Operationally,  



32 

Peripheral 
Nervous 
System 

A. Primary lytic infection 

C. Reactivation 

B. Latency 

Skin 

Figure 1-2. Overview of HSV-1 primary lytic infection, latency and reactivation. 

(A) The primary infection is initiated in the epithelial cells with lytic replication to 

produce viral progeny. Virus spreads to sensory neurons innervating the primary site 

of infection, where a productive infection also occurs. The virus can spread to other 

neurons and also return to the skin by anterograde transport to establish infection in 

another site. (B) HSV-1 latency is established in the sensory neurons, characterised by 

the persistence of viral DNA and the lack of infectious virus. (C) Following a stimulus, 

the virus may reactivation from latency, reestablish a productive infection in both the 

neurons and the site of primary skin infection. 
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latency is defined as the persistence of viral DNA in the absence of infectious virus and 

repression of viral protein production (Decman et al., 2005a; Steiner and Kennedy, 1995; 

Wagner and Bloom, 1997). The establishment of latency means that there is a stable 

reservoir of viral DNA that persists for long periods of time (Hill et al., 2008; Hill et al., 

1996a; Rock and Fraser, 1983).  

The virus can periodically re-emerge from latency in one or a few neurons in response to 

external stimuli such as stress or immunosuppression (Ecob-Prince and Hassan, 1994; 

Sawtell et al., 1998). This leads to virion formation, anterograde transport back to the 

peripheral site and viral shedding, with or without recurrent lesions (Antinone and Smith, 

2010; Wisner et al., 2011). When this activity leads to the formation of a lesion it is termed 

recrudescence (as reviewed by Knipe and Cliffe, 2008). 

1.1.6 The immune response elicited by HSV-1 infection 

Infection with HSV-1 produces a complex cascade of immune responses, with both the 

innate and adaptive arms of the immune system recruited. While the exact contribution of 

different cell subsets to the immune response against HSV is unknown, it appears clear 

that there is substantial redundancy (Kastrukoff et al., 2010). The immune response is 

important for restricting the acute infection with HSV-1, but it is unclear to what extent 

the immune response is responsible for suppressing the virus into latency. Once latency is 

established, the immune response to HSV-1 plays a vital part in determining the outcome 

following reactivation (Liu et al., 2000). Therefore, for the sake of clarity, only the immune 

response to acute primary HSV-1 infection will be discussed in this section, with the role of 

the host’s immune response during latency discussed in greater detail in Section 1.3.7. 

Following infection with HSV-1, an innate immune response is induced that is vital for 

controlling the HSV-1 replication and preventing virus spread to the central nervous 

system (CNS). This begins with an influx of neutrophils, though these cells probably do not 

play a key role in controlling infection (Stumpf et al., 2002; Wojtasiak et al., 2010). During 

this early stage of infection, numerous chemokines and cytokines are produced through 

induction of pathogen recognition receptors such as toll-like receptors (TLRs) 2, 3 and 9 

(Davey et al., 2010; Rasmussen et al., 2007; Sørensen et al., 2008). These factors play an 

important role in attracting other immune cells to the site of infection that are able to 

effectively suppress local HSV-1 infection (Cheng et al., 2000; Kastrukoff et al., 2010; 

Shimeld et al., 1995). This suppression of virus is thought to be mediated by the 

interferons (IFNs), particularly IFN-α and IFN-β, produced by cells such as plasmacytoid 

dendritic cells, macrophages and natural killer (NK) cells (Rasmussen et al., 2007). γδ+ T 
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cells also infiltrate the trigeminal ganglia (TG) of ocularly infected mice shortly after 

infection, but it is unknown if they significantly contribute to the control of HSV-1 

(Kastrukoff et al., 2010; Kodukula et al., 1999; Liu et al., 1996; Sciammas et al., 1997).  

IFN-α and IFN-β have potent antiviral effects, limiting the replication and spread of virus 

at both the site of infection and within the nervous system, demonstrated by the enhanced 

virulence of HSV in IFN-receptor deficient mice following corneal infection (Leib et al., 

1999). The importance of IFN-α and IFN-β for controlling HSV-1 infection is further 

underscored by the multiple mechanisms employed by the virus to evade this IFN 

response (Leib et al., 2000; Lin et al., 2004; Sanchez and Mohr, 2007). In addition, IFN-γ 

and tumour necrosis factor α (TNF-α) have some role in controlling viral infection, such as 

through the mediation of leukocyte infiltration and upregulation of major 

histocompatibility complex class I (MHC-I), but the overall contribution of IFN-γ to 

controlling HSV-1 infection is controversial (Geiger et al., 1997; Ghiasi et al., 2000; 

Kastrukoff et al., 2010; Kodukula et al., 1999; Leib et al., 1999; Liu et al., 1996; Tang and 

Hendricks, 1996; Tigges et al., 1996). Various other cytokines and antimicrobial molecules 

have been implicated in control of HSV-1 infection, including, but not limited to, 

interleukin (IL)-6, nitric oxide and IL-12 (Karupiah et al., 1993; Kodukula et al., 1999; 

Pasieka et al., 2009; Stumpf et al., 2002). 

Ultimately it is the adaptive immune response that is required to control the virus 

infection and for the establishment of latency. Large numbers of CD8+ T cells are recruited 

and produced, along with the production of large amounts of IFN-γ by CD4+ T cells. This is 

dependent on the presentation of antigen by primed dendritic cells to CD4+ and CD8+ T 

cells (Allan et al., 2003; Bedoui et al., 2009; Lee et al., 2009). Using CD4+ T cell deficient 

mice, it has been shown that CD4+ T cells are important for controlling HSV-1 in the 

periphery, probably via the recruitment of cells such as macrophages (Manickan and 

Rouse, 1995). By contrast, in the nervous system CD8+ T cells play a more significant role 

(Nash et al., 1987; Simmons and Nash, 1985; Simmons and Tscharke, 1992; Valyi-Nagy et 

al., 1992). 

Nonspecific CD8+ T cell recruitment into inflamed and infected tissues occurs shortly after 

infection, but subsequent accumulation, expansion and maintenance of activated CD8+ T 

cells is HSV-specific (Stock et al., 2011; Van Lint et al., 2005; Wakim et al., 2008a). By 

transferring HSV-specific effector CD8+ T cells, Wakim and colleagues (2008b) found that 

the presence of HSV-specific effector CD8+ T cells during acute infection can attenuate 

primary infection. These CD8+ T cells do not prevent the establishment of latency within 

neurons but they can dampen the skin infection and limit skin to nerve transmission, 
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thereby reducing the average HSV genome copy number in residual latently infected 

neurons Further, if activated HSV-specific CD8+ T cells are transferred into an immune 

incompetent RAG1-/- mouse shortly after infection, these same cells can completely clear 

ongoing lytic replication (Van Lint et al., 2004). Therefore, CD8+ T cells may act to clear 

replicating virus after infection is well established, as well as limiting the spread of HSV-1 

from the primary site of infection or to the CNS to reduce the viral genome copy number 

within latently infected neurons (Kastrukoff et al., 2010; Van Lint et al., 2004).  

Infection with HSV-1 results in the production of a humoral immune response but it does 

not play a dominant role in controlling infection (Deshpande et al., 2000a). In an ocular 

model of HSV-1 infection, B-cell deficient mice were found to be more susceptible to 

herpes-induced encephalitis and keratitis, with increased viral persistence in the eye. 

However, these mice are also deficient in T cell mediated immune responses, and it is 

likely that B cells primarily function as regulators of the T cell response in the context of 

HSV-1 infection by presenting antigen or producing cytokines (Deshpande et al., 2000b). It 

has also been shown that antibodies against HSV can mediate prophylactic protection in 

mice, but this is dependent on high concentrations of antibody or sera that far exceed 

normal physiological levels following HSV-1 infection of mice. For example, it has also 

been shown that the administration of a monoclonal antibody can protect nude mice 

against subsequent HSV-1 infection (Sanna et al., 1996). In addition, the administration of 

subunit vaccines designed to elicit antibody responses directed against HSV-1 

glycoproteins resulted in high neutralising antibody titres that were protective against 

subsequent lethal challenges of HSV-1 in mice (Ghiasi et al., 1994). So, the induction of a 

strong humoral immune may be able to mediate protection from HSV-1 infection in a 

vaccine context, but the humoral immune response does not appear to significantly 

influence the course of a natural HSV-1 infection. 

 

1.2 The cascade of HSV-1 lytic gene expression 

In the majority of cell types, including epithelial cells, HSV-1 is a cytolytic virus (Roizman, 

2011; Syrjänen et al., 1996). HSV-1 lytic infection is characterised by the expression of an 

ordered cascade of genes. With the exception of a small family of RNAs known as the 

latency associated transcripts, or LATs, all HSV-1 genes are classified into one of three 

main temporal classes: immediate early (also referred to as α), early (β; also sometimes 

referred to as delayed early) and late (γ; Honess and Roizman, 1974; Stevens et al., 1987). 

The assignment of genes to specific temporal classes is usually performed based on their 
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expression in cells in vitro, such as fibroblasts, although there may be subtle distinctions in 

patterns of expression in vivo, particularly in neuronal cells (Harkness et al., 2014; Honess 

and Roizman, 1974; Stingley et al., 2000). All three classes of genes are subject to temporal 

regulation and recognition by various transcription factors. These transcription factors 

can bind to the different motifs, such as stimulator protein 1 (SP1) binding motifs and 

CAAT elements, found within the promoter region, as well as other upstream nucleotide 

sequences (Jones and Tjian, 1985; Lieu and Wagner, 2000; Pande et al., 1998; as reviewed 

by Rajčáni et al., 2004). However, all HSV-1 promoters, regardless of their class, require 

the presence of a TATA element (Homa et al., 1988; Pande et al., 1998; Preston et al., 

1984). Despite decades of research, the precise mechanisms of this complex regulatory 

control are unknown and are under intensive study. 

1.2.1 The viral transactivators: expression and function of the 

immediate early genes 

The immediate early genes are the first class of genes expressed following infection of a 

cell, with these genes being expressed within one or two hours of infection (Harkness et 

al., 2014; Honess and Roizman, 1974; Stingley et al., 2000). The expression occurs without 

any HSV-1 protein synthesis in the newly infected cell, using the pre-existing transcription 

apparatus of the cell (Honess and Roizman, 1974). The expression of the immediate early 

genes is augmented and stimulated by the viral regulatory transcription factor virion 

protein (VP) 16, which forms a part of the virion tegument (Campbell et al., 1984).  

There are only five IE proteins expressed by HSV-1, of which only two – ICP4 and ICP27 - 

are considered essential, as they are required for viral replication in vitro (Dixon and 

Schaffer, 1980; Mavromara-Nazos et al., 1986; Sacks et al., 1985; Sears et al., 1985). These 

genes, which have been identified based on their timing of expression and the failure of 

repression of expression by protein synthesis inhibitors, such as puromycin or 

cycloheximide, in cell culture (Honess and Roizman, 1974; Stingley et al., 2000; Summers 

et al., 2001), are:  

1. RL2 (also known as α0), encoding ICP0 

2. RS1 (also known as α4), encoding ICP4 

3. US1 (also known as α22), encoding ICP22 

4. US12 (or α47), encoding ICP47 

5. UL54, encoding ICP27 

Given their responsiveness to VP16, these genes are also defined based on the presence of 

a ‘TAATGARAT’ VP16 responsiveness element (VRE) in their promoter (Mackem and 

Roizman, 1982). Briefly, following HSV-1 infection, VP16 binds host cell factor 1 (HCF-1), 
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enabling nuclear localization, where it then associated with octamer binding protein 1 

(OCT-1). OCT-1 binds to the VRE, stimulating transcription of the immediate early 

genes(Arnosti et al., 1993; Boissière et al., 1999; Preston et al., 1988). In addition, there 

are other motifs within these promoters that are not as conserved across this class of 

genes, such as SP1 binding motifs, motifs for binding of the cAMP response element 

binding protein and F2 transcription factor binding motifs (Jones and Tjian, 1985; 

O'Rourke and O'Hare, 1993; Wheatley et al., 1992). 

Four of the immediate early proteins (with the exception of ICP47) have functions that are 

related to the control of the HSV-1 gene expression cascade. Two proteins of these 

proteins, ICP4 and ICP0, are the major transactivators of viral gene expression (DeLuca 

and Schaffer, 1985; Dixon and Schaffer, 1980; Everett, 1984; O'Hare and Hayward, 1985; 

Smith et al., 1993). However, most of the proteins encoded by immediate early genes are 

multifunctional, and have diverse other roles, including regulation of the cell cycle, DNA 

repair, antiviral responses, cellular transcription, nuclear export of mRNA, and 

interference with splicing, amongst many others (Früh et al., 1995; Gu et al., 2005; Hardy 

and Sandri-Goldin, 1994; Hill et al., 1995; Lilley et al., 2011; Orlando et al., 2006a). In this 

way, they play an important role in creating an environment that is generally permissive 

for lytic infection (as reviewed by Boutell and Everett, 2013; Smith et al., 2005; Weir, 

2001).  

1.2.2 Expression and role of the early genes in viral DNA replication 

The next class of genes expressed in the HSV-1 gene expression cascade is the early genes. 

These genes are expressed primarily between four and seven hours after infection 

(Harkness et al., 2014; Honess and Roizman, 1974). The early genes include seven 

proteins that are considered essential for DNA replication, namely the DNA polymerase, 

DNA binding proteins, origin of replication binding protein and members of the 

helicase/primase complex (Crute et al., 1989; Elias and Lehman, 1988; Lee and Knipe, 

1985; Pande et al., 1998; Purifoy et al., 1977; Wu et al., 1988). The remaining proteins 

encoded by the early genes include other virus-specified enzymes involved in nucleotide 

metabolism and DNA repair, as well as accessory non-structural proteins (Caradonna and 

Cheng, 1981; Frame et al., 1985; Jamieson and Subak-Sharpe, 1974; Shao et al., 1993). 

Unlike for the immediate early promoters, which are defined based on the presence of the 

VRE, there is less consensus amongst the required elements for promoters of the E genes. 

ICP4 is the major transactivator of early gene expression, along with cellular transcription 

factors like SP1 and CCAAT binding factor (CTF), as well as the Transcription factor II 

D/TATA Binding Protein (TRIID/TBP) transcription complex (Carrozza and DeLuca, 1996; 
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Imbalzano et al., 1991). ICP0 also serves to activate transcription of the early genes (Cai 

and Schaffer, 1992; Chen and Silverstein, 1992; Desai et al., 1993). Of the early genes, the 

UL23 (encoding thymidine kinase (TK)), UL37 and the UL50 (encoding dUTPase) 

promoters are the most well studied (Imbalzano et al., 1991; McKnight, 1982; Pande et al., 

1998). 

1.2.3 Expression and function of the late genes as structural proteins 

and in immune evasion 

The final class of genes in the HSV-1 gene expression cascade is the late genes. These genes 

are predominantly transcribed after viral DNA synthesis commences, at least four hours 

after infection, with most expression occurring between six and twelve hours post 

infection (p.i.; Harkness et al., 2014; Stingley et al., 2000). The late genes are classified into 

two subclasses, the leaky late (γ1) and true late (γ2). The γ1 genes are transcribed at low 

levels prior to viral DNA replication, while the transcription of the γ2 genes is absolutely 

dependent on prior viral DNA replication (Conley et al., 1981; Holland et al., 1980; Johnson 

et al., 1986). 

Late gene promoters require the presence of a TATA element, and an initiator (INR) 

element at the cap site, which serves to distinguish them from the early promoters (Huang 

and Wagner, 1994; Sethna and Weir, 1993; Steffy and Weir, 1991). The distinction 

between the γ1 and γ2 class of genes seems to be dictated by the regulatory elements found 

within these promoters. Most γ2 promoters require a downstream activator sequence 

(DAS) but lack cis-acting regulatory elements upstream of the TATA element (Homa et al., 

1988; Kibler et al., 1991; Mavromara-Nazos and Roizman, 1989). By contrast, γ1 

promoters do require such elements, similar to those found in the early gene promoters, 

like SP1 and CAAT binding motifs (Huang et al., 1993a; Huang and Wagner, 1994; Lieu and 

Wagner, 2000; Sethna and Weir, 1993; Steffy and Weir, 1991). However, there is a 

complex interplay of factors that regulate expression of this class of genes and as for the 

early genes, there is less consensus in the common regulatory elements of the late genes 

(Lieu and Wagner, 2000).  

The proper expression of the late genes, both γ1 and γ2, requires at least three viral 

proteins – ICP4, ICP27 and ICP8. ICP4 acts as a transactivator of late gene expression in a 

similar manner as it does for the early genes (DeLuca and Schaffer, 1985; Watson and 

Clements, 1980). ICP4 binds to the INR element and DAS found in the promoters of the late 

genes, especially the γ2 genes (Guzowski et al., 1994; Kim et al., 2002). Similarly, ICP27 

stimulates transcription and translation of the late genes (Fontaine-Rodriguez and Knipe, 

2008; Jean et al., 2001). ICP8 has opposing effects on late viral gene expression, 
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upregulating late gene expression via an association with ICP27 and the cellular RNA 

polymerase holoenzyme. However, ICP8 can also downregulate expression of the γ2 genes 

prior to viral DNA synthesis, possibly through the modulation of the host’s chromatin by 

an ill-defined mechanism (Chen and Knipe, 1996; Gao and Knipe, 1991; Taylor and Knipe, 

2004; Zhou and Knipe, 2002). ICP22 and ICP0 also act to upregulate expression of the late 

genes (Cai and Schaffer, 1992; Chen and Silverstein, 1992; Rice et al., 1995).  

Functionally, the late genes can also be divided into two broad categories. The first 

category includes the structural proteins necessary for the architecture of new virions. 

More than 30 proteins form a structural part of the virion, and all are expressed with late 

kinetics (Wagner and Bloom, 1997). The second category concerns the various accessory 

proteins that are important for HSV-1 infection, many of which form a part of the virion. 

Examples of these proteins include the immunomodulatory protein ICP34.5, and the virion 

host shut-off protein, which is responsible for shutting down host protein synthesis 

(Kwong and Frenkel, 1987; Lubinski et al., 1998; Orvedahl et al., 2007; Suzutani et al., 

2000). 

1.2.4 Chromatin association with the viral genome and the impact of 

chromatin modifications on the regulation of lytic viral gene 

expression 

HSV DNA is naked within the virion, and rapidly associates with histones once it enters the 

nucleus (Muggeridge and Fraser, 1986; Oh and Fraser, 2008; Pignatti and Cassai, 1980). It 

is likely that this process differs depending on cell type, with a lack of chromatin 

condensation on the viral genome in epithelial cells relative to in neuronal cells (Knipe and 

Cliffe, 2008). It was generally thought that there was a lack of chromatin condensation on 

lytic gene promoters, such as the ICP4 and TK promoters, during acute infection (Herrera 

and Triezenberg, 2004; Leinbach and Summers, 1980; Lentine and Bachenheimer, 1990; 

Pignatti and Cassai, 1980; Wang et al., 2005b). However, more recent research suggests 

that the viral genome is found in unstable nucleosome-like complexes during the lytic 

infection and replication (Cliffe and Knipe, 2008; Kent et al., 2004; Lacasse and Schang, 

2010, 2012). The accessibility of the HSV-1 DNA in these complexes changes over the 

course of infection (Lacasse and Schang, 2012) but all kinetic classes of promoter become 

associated with histones (Kent et al., 2004). Following viral DNA replication, new genomes 

do not become associated with chromatin late in productive infection (Kent et al., 2004; 

Oh and Fraser, 2008). 

Those histones coupled to lytic genes during productive infection are associated with a 

variety of modifications that largely resemble that of euchromatin. This includes 
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methylation of lysine 4 of histone H3 (metH3K4) and acetylation of lysines 9 and 14 of 

histone H3 (acH3K9 and acH3K14, respectively) (Herrera and Triezenberg, 2004; Kent et 

al., 2004). Although these modifications may stimulate lytic gene expression, the situation 

is complex. For example, an inhibitor of protein methylation reduced viral gene 

expression, but specific knockdown of H3K4 methyltransferases using small interference 

RNA only had a slightly reduced, or no, effect on the expression of some viral genes (Huang 

et al., 2006). 

Several viral proteins are believed to be involved in modulating viral chromatin, such as 

VP16, ICP0, and ICP8 (Cliffe and Knipe, 2008; Herrera and Triezenberg, 2004; Taylor and 

Knipe, 2004). These proteins contribute to the lack of chromatin on HSV-1 lytic genes and 

active modifications on those histones that are assembled on viral DNA, but the details of 

possible mechanisms remain to be elucidated. For example, VP16 can recruit the 

chromatin remodeling complexes to viral immediate early promoters, and in the absence 

of VP16 there are increased levels of H3 on these promoters, as well as decreased amounts 

of acetylated histones on early gene promoters (Herrera and Triezenberg, 2004; Kutluay 

and Triezenberg, 2009). Likewise, deletion of ICP0 leads to decreased association of 

histone 3 with the promoters of the genes encoding ICP4 and ICP8 (Cliffe and Knipe, 

2008). This association may be mediated through proteasomal degradation by ICP0 of 

proteins like Sp100. Sp100 interacts with the heterochromatin binding protein HP1, as 

well as other proteins involved in the assembly of heterochromatin such as centromere 

protein (CENP)-A and CENP-C (Chelbi-Alix and de The, 1999; Everett et al., 1999; Lomonte 

et al., 2001). Further, ICP0 can bind the RE1-silencing transcription factor (REST)/lysine 

specific demethylase 1 (LSD1)/corepressor element-1 silencing transcription factor 

(CoREST)/histone deacetylase (HDAC) 1/2 complex, causing the dissociation of HDAC1/2, 

blocking gene silencing, as well as binding to class II HDACs, reducing their activity 

(Giordani et al., 2008; Gu et al., 2005; Gu and Roizman, 2007; Lomonte et al., 2004).  

 

1.3 HSV-1 Latency 

Definitions of HSV-1 latency vary, but most commonly latency is defined as the presence of 

the HSV-1 genome in the host’s neurons without the production of infectious viral 

particles. This definition does not preclude viral gene expression, though typically only the 

LATs can be abundantly detected during latency (Decman et al., 2005a; Steiner and 

Kennedy, 1995; Stevens and Cook, 1971; Stevens et al., 1987; Wagner and Bloom, 1997). 

Three stages of latency are recognised, which represent a biological continuum: 
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establishment, maintenance and reactivation. The suppression, or lack thereof, of viral 

gene expression is pivotal in all three stages of latency.  

Nearly three decades ago, it was hypothesised that the establishment of a lytic or latent 

HSV-1 infection represents mutually exclusive pathways that diverge early after infection 

(Kosz-Vnenchak et al., 1993; Margolis et al., 1992; Valyi-Nagy et al., 1991). This hypothesis 

was based on tissue culture studies that found that the synthesis of immediate early 

proteins is essential for virus replication and productive lytic infection. Mutants lacking 

these proteins are not cytotoxic, but are retained in a quiescent state in the cell (Ace et al., 

1989; Everett, 1989; Preston and Nicholl, 1997). Further, latency can be established in 

neurons that did not innervate the area of initial infection and show no evidence of prior 

immediate early gene expression (Simmons et al., 1992). At some point this state may be 

disturbed, allowing for reactivation. Unfortunately, such a simplistic view does not explain 

all facets of latent infection. For example, some neurons survive the expression of genes 

associated with lytic infection and go on to form part of the latent pool (Proença et al., 

2008; Proença et al., 2011; Simmons and Tscharke, 1992). Further, there are numerous 

biological mechanisms, deriving from the virus and host, which suppress expression from 

the viral genome and maintain latency, which will be discussed below.  

1.3.1 The HSV-1 genome and the impact of viral DNA replication 

during the acute infection on the establishment of latency 

During latency, viral DNA replication does not occur and the viral genome is maintained 

within the cell as a circular episome (Efstathiou et al., 1986; Rock and Fraser, 1983; Rock 

and Fraser, 1985). This episome is associated with chromatin and under extensive 

epigenetic control via histone modifications (Section 1.3.4; as reviewed by Knipe and 

Cliffe, 2008).  

Viral DNA replication is a core feature of the HSV-1 infection and so, at the level of the 

whole host, precedes the establishment of latency. However, DNA replication is not 

essential for the establishment of latency, both at the level of the host and within 

individual cells. Viruses that lack proteins required for viral DNA replication at both the 

peripheral site of infection, such ICP4, and within the ganglia, such as the viral TK, are able 

to establish latency (Coen et al., 1989; Dobson et al., 1990; Katz et al., 1990; Sedarati et al., 

1993; Steiner et al., 1990; Valyi-Nagy et al., 1991). Further, latency can be established even 

when viral replication is blocked by acyclovir and cytosine arabinoside treatment 

(Margolis et al., 1992).  
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Viral DNA replication is not required for the establishment of latency per se but viral 

replication in the skin increases the number of virus genomes that can gain access to 

neurons, and influences the size of the latent HSV-1 reservoir (Ellison et al., 2000; Steiner 

et al., 1990; Thompson and Sawtell, 2000; Wakim et al., 2008b). Further, based on the 

expression of LAT and DNA levels in different thoracic segments following flank 

zosteriform HSV-1 model, it was found that the bulk of DNA detected in latently infected 

neurons is likely due to replication during the acute infection (Slobedman et al., 1994). 

While this may be the result of transport of viral genomes from peripheral sites, it may 

also reflect viral DNA replication in some, but not all, neurons (Simmons et al., 1992). 

While latently infected neurons must contain at least one copy of the viral genome, 

contextual analysis (CXA), in which individual neurons are separated and analysed by PCR, 

has revealed that the viral genome copy number varies between one and 100 copies per 

infected neuron (Sawtell, 1997). Therefore, there is considerable heterogeneity in the viral 

DNA content of latently infected cells in both mice and humans, with rare latently-infected 

neurons harboring thousands of copies of the HSV-1 genome (Chen et al., 2002b; Hill et al., 

1996a; Ma et al., 2014; Sawtell, 1997; Wang et al., 2005a). This is likely to be of practical 

consequence for the progression of the viral infection. Those neurons infected with strains 

of HSV-1 characterised by higher latent genome copy numbers are more predisposed 

towards reactivation (Sawtell et al., 1998). Mice infected with different HSV-1 strains 

differed in their ability to reactivate following transient hyperthermia in vivo, which 

correlated with viral genome copy number distribution, but not the number of neurons 

harboring latent virus. This suggested that neurons containing large amounts of HSV DNA 

may be more susceptible to reactivation (Sawtell et al., 1998). Similarly, the rates of 

reactivation as measured by the detection of cell free virus released from ganglion cells 

after culture from mice latently infected with HSV-2 were associated with the latent viral 

load (refer to Section 1.3.7; Hoshino et al., 2007).  

1.3.2 The Latency Associated Transcripts 

1.3.2.1 Description of the LATs and their expression during latency 

The LATs are the only viral transcripts abundantly transcribed during latency and have 

been the focus of a hefty amount of research. They comprise a series of colinear, 

predominantly nuclear transcripts. The minor LAT is transcribed antisense to the gene 

encoding ICP0 and extends to a polyadenylation signal in the short repeat region, making 

it 8.3 kb long (Zwaagstra et al., 1990). The major LAT is a highly abundant non-

polyadenylated species of 2.0 kb and is derived by a splicing event from the less abundant 

minor LAT. Further splicing of the 2.0 kb major LAT RNA occurs within neurons to 
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produce the 1.5 kb LAT, which accumulates as a stable lariat and is thought to be 

important for the establishment of latency (Farrell et al., 1991; Rock et al., 1987; Spivack 

and Fraser, 1987; Wagner et al., 1988b; Zabolotny et al., 1997). While the LATs can bind to 

polyribosomes, this probably reflects a structural or regulatory role for the LATs in the 

ribosomal complex as the major LAT lacks polyadenylation (Ahmed and Fraser, 2001; 

Goldenberg et al., 1997; Wagner et al., 1988a). The overwhelming consensus is that the 

LATs do not encode a functional protein, despite some reports to the contrary (Doerig et 

al., 1991; Drolet et al., 1998; Henderson et al., 2009; Jaber et al., 2009; Lagunoff and 

Roizman, 1994; Naito et al., 2005; Thomas et al., 1999). One complicating factor in 

determining the exact role of the LATs during latency is the presence of other ORFs that 

overlap the LAT region, making the construction of deletion mutants problematic. Proteins 

that are coded for in the same region as the LATs include ICP34.5, ICP4, and ICP0, as well 

as other less studied ORFs (Bolovan et al., 1994; Jaber et al., 2009; Lagunoff and Roizman, 

1994; Perng et al., 1996a; Perng et al., 1995; Wagner et al., 1988a). 

The LATs are first detectable in ganglia during the lytic phase of HSV-1 infection, typically 

by about 48 to 72 hours p.i. in ocularly infected mice (Kramer et al., 1998). However, much 

higher transcript levels are detected in ganglia during latency (Margolis et al., 1992). The 

LATs have been detected in latently infected humans, as well as experimentally infected 

animal models including the guinea pig, rabbit and mouse (Deatly et al., 1987; Krause et 

al., 1988; Lyn Burke et al., 1991; Rock et al., 1987; Spivack and Fraser, 1987; Stevens et al., 

1988; Stevens et al., 1987; Wang et al., 2005a).  

1.3.2.2 The importance of the LATs and their role in the establishment and 

reactivation from latency 

Despite decades of intensive research on the role of the LATs, they are not a critical part of 

the HSV-1 cycle of latency and reactivation, as the region of the genome encoding the LATs 

is not absolutely required for either the establishment, maintenance of or reactivation 

from latency (Fareed and Spivack, 1994; Hill et al., 1990; Izumi et al., 1989; Javier et al., 

1988; Leib et al., 1989; Perng et al., 1994; Sedarati et al., 1989; Steiner et al., 1989). Early 

studies using techniques such as laser capture microdissection (LCM) followed by 

quantitative reverse-transcriptase PCR (qRT-PCR), in situ PCR and direct analyses of 

individual neurons by CXA found that LATs are transcribed in a fraction of neurons 

harbouring latent HSV-1 genomes ranging from about five to 30% of latently infected cells 

(Chen et al., 2002b; Ellison et al., 2000; Maggioncalda et al., 1996; Mehta et al., 1995; 

Sawtell, 1997; Wang et al., 2005a). However, this has been confounded by the limited 

sensitivity of these detection methods, the small population of infected neurons, and the 
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variable expression of the LATs. The variable expression of the LATs proved difficult to 

account for, as the use of the HSV-2 guinea pig reactivation model revealed that the 

frequency of spontaneous reactivation is not correlated with the level of LAT production 

(Bourne et al., 1994). Most recently it has been found that LATs are probably expressed in 

all latently infected neurons at some point during latency, but the consequences of this 

transient expression are unknown (Ma et al., 2014; Proença et al., 2008).  

Determining the role of the LATs has been problematic, as it is difficult to dissect out the 

impact of expression during the lytic stage of infection and establishment of latency from 

the maintenance of and reactivation from latency. A further layer of complexity is added 

by the different animal models of HSV-1, particularly differences in the rabbit and mouse 

models of HSV-1 (Perng et al., 2001; as reviewed by Wagner and Bloom, 1997).  

The majority of studies using mouse models of HSV-1 infection where the expression of 

LAT is abrogated conclude these viruses reactivate much less efficiently following explant 

reactivation or other methods of in vivo reactivation (Devi-Rao et al., 1994; Leib et al., 

1989; Sawtell and Thompson, 1992a; Steiner et al., 1989). However, reactivation by 

viruses that fail to express LAT is influenced by the route of infection, the strain of HSV-1 

used or the site of latency establishment (Izumi et al., 1989; Nicoll et al., 2012; Perng et al., 

2001). A LAT null virus was deficient for reactivation when latency was established in the 

in the TG but not in the lumbosacral ganglia (Sawtell and Thompson, 1992a). Similarly, a 

mutant virus lacking the TATA box and promoter function of LAT on the strain 17syn+ 

background was deficient for explant reactivation, but a comparable virus constructed on 

the less virulent KOS background was not (Devi-Rao et al., 1994; Thompson et al., 1986). 

In the ocular rabbit model of HSV-1 infection, viruses that lack expression of the LATs 

establish latency to similar levels but show a reduced frequency of spontaneous 

reactivation. They also fail to reactivate as efficiently following induced reactivation, in 

either the iontophoresis-epinephrine or other models of reactivation (Bloom et al., 1994; 

Hill et al., 1996b; Hill et al., 1990; Perng et al., 1994; Trousdale et al., 1991). Only the first 

1.5 kb of the 8.3 kb minor LAT is required for a normal reactivation phenotype (Bloom et 

al., 1996; Perng et al., 1996b). A smaller 348 bp deletion was shown to be associated with 

a decrease in spontaneous reactivation frequency (Bloom et al., 1996). However, a similar, 

though not entirely overlapping, 371 bp deletion in LAT constructed using the McKrae 

strain had no impact on reactivation in the rabbit ocular model, when the same mutant 

was constructed using strain 17syn+, both spontaneous and induced reactivation were 

reduced relative to wildtype virus (Hill et al., 1996b; Loutsch et al., 1999; Perng et al., 

1996c). Further, this same region is not crucial for the recovery of virus by explant 

induced reactivation of latently infected mice (Bloom et al., 1996; Maggioncalda et al., 
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1994). Given the lack of consistency of the behaviour of LAT mutant viruses in mouse and 

rabbit models, it is unclear whether any of these findings would be relevant when 

considering human infection. 

The observed reactivation phenotype is based on the assumption that latency is 

established at equivalent levels in the absence of LAT expression. Most studies show no 

difference in viral replication during the acute infection or the maintenance of latency, as 

manifest by the stability of the viral genome over time. Unfortunately, this was often 

measured by relatively insensitive methods like slot blot hybridisation on whole ganglia 

(Bloom et al., 1994; Hill et al., 1990). Thompson and Sawtell (1997) found a 75% 

reduction in the number of cells in which latency is established in mice infected with a 

mutant lacking either the basal LAT promoter or 5’ end of the LAT gene relative to 

wildtype virus as indicated by the presence of viral DNA detected by CXA. Mice infected 

with this LAT mutant were impaired for reactivation following hyperthermia. Results from 

other murine and rabbit models have confirmed that LAT expression seems to dictate the 

number of neurons in which latency is established, with mutant viruses with reduced LAT 

expression exhibited a reduce ability to reactive (Devi-Rao et al., 1994; Maggioncalda et al., 

1996; Perng et al., 2000a; Sawtell and Thompson, 1992a). However, altering the inoculum 

dose of the poorly reactivating LAT deletion virus 17ΔPst in rabbit showed that the poor 

reactivation phenotype cannot be solely accounted for by a failure to establish wildtype 

levels of latency as evidenced by low viral genome copy number (O'Neil et al., 2004).  

It is generally accepted that the abrogation of LAT expression has little impact on the 

maintenance of latency. However, given the broad viral genome copy number distribution 

across latently infected cells, qPCR will only reveal substantial differences in the size of the 

latent reservoir. By using a virus that fails to express LAT due to a deletion in the 

promoter region in a model that allows for historical marking of all neurons latently 

infected with HSV-1, it was revealed that the latent reservoir was more unstable in the 

absence of LAT expression. This was coupled with a slight decrease in the efficiency of 

latency establishment (Nicoll et al., 2012). Therefore, the LATs may still have an influence 

on the maintenance of latency. 

1.3.2.3 Inhibition of lytic viral gene transcription by the LATs 

Since the discovery of the LATs, it has been posited that they serve to inhibit lytic viral 

gene expression, enhancing the stability of latency (Sawtell and Thompson, 1992a). This 

was first demonstrated by performing in situ hybridisation (ISH) on TG taken from acutely 

infected mice to show that there is an earlier increase of ICP4, VP16 and glycoprotein H 

transcripts in the absence of LAT (Garber et al., 1997). Similarly, the detection of rare lytic 
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transcripts during latency showed that ICP0 transcripts were differentially expressed 

compared to LAT (Maillet et al., 2006). Further, cultured neuroblastoma cells transformed 

to express the 2 kb LAT had reduced permissiveness to HSV-1 infection and a reduction in 

the levels of all immediate early mRNAs, including ICP0 (Farrell et al., 1991; Mador et al., 

1998). Further, Chen and colleagues found greater accumulation of ICP4 and TK 

transcripts during latency following infection with a LAT null virus compared to wildtype 

virus, suggesting a potential role for LAT in silencing viral gene expression (Chen et al., 

1997). By contrast, an opposing phenotype was observed in rabbits ocularly infected with 

the LAT deletion virus, 17ΔPst, with a significant decrease in accumulation of ICP4, TK or 

glycoprotein C (gC) transcripts during latency compared to wildtype virus (Giordani et al., 

2008). However, despite the palpable differences in the rabbit and mouse models of HSV-1 

latency, LAT clearly plays a role in modulating lytic viral gene expression during latency. 

This was originally thought to be mediated by antisense inhibition of ICP0 or ICP4 by LAT, 

leading to increased virus shutdown and establishment of latency (Rock et al., 1987; 

Stevens et al., 1987). However, this is not the case (Burton et al., 2003a; Chen et al., 2002a; 

Shen et al., 2009; Steiner et al., 1989). This is reinforced by the observation that sequences 

that are responsible for the spontaneous reactivation of HSV-1 McKrae in the rabbit ocular 

model do not overlap ICP0 (Perng et al., 1996b). Further, adding the first 1.5 kb of the 

primary LAT transcript into the dLAT2903 virus at an ectopic locus was able to restore the 

reactivation phenotype to this virus, despite the absence of expression of the remainder of 

LAT (Drolet et al., 1999; Perng et al., 1996b). 

As an alternative means of regulating viral gene expression, LAT serves as a microRNA 

(miRNA) precursor (described in greater detail in Section 1.3.3; Umbach et al., 2008). 

Additionally, two small RNAs that are 62 and 36 nucleotides long have also been identified 

that are expressed in mice, named LAT sRNA1 and LAT sRNA2 respectively (Peng et al., 

2008; Shen et al., 2009). Following cotransfection of sRNA1 or sRNA2 with HSV-1 genomic 

DNA into Neuro2A cells, they can inhibit cold shock induced apoptosis and the production 

of infectious virus. They may do this inducing IFN-β promoter activity in the presence of 

the receptor retinoic acid-inducible gene 1, but they also act by inducing herpes virus 

entry mediator expression in latently infected mice (Allen et al., 2014; da Silva and Jones, 

2013; Peng et al., 2008; Shen et al., 2009). 

1.3.2.4 Promotion of cell survival by the anti-apoptotic activity of LAT 

LAT has an anti-apoptotic activity that results in increased neuronal survival, increasing 

the establishment of latency (Perng et al., 2000b; Thompson and Sawtell, 2001). Initial 

experiments with LAT deletion viruses resulted in increased apoptosis in infected mice 
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and rabbits during acute infection (Perng et al., 2000b). Subsequent analysis revealed that 

the region associated with this anti-apoptotic activity in vivo mapped to the first 1.5 kb 

following the LAT promoter, at the 3’ end of exon 1 and 5’ end of the stable 2kb intron 

(Ahmed et al., 2002; Branco and Fraser, 2005; Inman et al., 2001; Perng et al., 2000b). 

Similarly, insertion of other inhibitors of apoptosis into such LAT null viruses is able to 

restore the ability of these viruses to reactivate in both rabbits and mice, although this was 

not measured in a highly quantitative way (Jin et al., 2008; Jin et al., 2005; Perng et al., 

2002).  

Further work, predominantly based on in vitro transfection assays with the 2 kb LAT 

intron, revealed that LAT can block the extrinsic (caspase 8-dependent) apoptosis 

pathway, as well as less efficiently blocking the intrinsic (caspase 9-dependent) apoptosis 

pathway, protecting cells from death (Ahmed et al., 2002; Carpenter et al., 2007; Jin et al., 

2003; Peng et al., 2004). It has also been shown that the 2 kb LAT can protect neuronal 

Neuro2A and C1300 cells against granzyme B (gzmB)-mediated caspase3-induced 

apoptosis and protect against CD8+ T cell killing in vitro (Jiang et al., 2011). Using LAT 

deletion viruses in Neuro2A cells, it was revealed that LATs can prevent apoptosis by 

inducing preferential accumulation of the anti-apoptotic Bcl-XL over the pro-apoptotic Bcl-

XS transcripts(Peng et al., 2003). However, the exact mechanism by which LAT mediates 

protection against apoptosis remains to be fully elucidated. 

1.3.3 Role of miRNAs in the regulation of the establishment and 

maintenance of latency 

Briefly, miRNAs are approximately 22 nucleotide RNAs derived from longer primary 

transcripts that specifically recognize target mRNAs and inhibit their translation or 

promote their degradation (as reviewed by Bartel, 2009). Given the relatively small coding 

capacity of viral genomes, miRNAs represented an attractive means for regulating viral 

gene expression, particularly during latency. Recently, it was determined by deep-

sequencing approaches of animal and cell culture based models of HSV-1 infection, as well 

as latently infected human samples, that HSV-1 encodes a set of 17 miRNAs (Held et al., 

2011; Jurak et al., 2014; Umbach et al., 2008; Umbach et al., 2009). Up to 27 miRNAs have 

been identified based on bioinformatics-based approaches (Cui et al., 2006; Jurak et al., 

2010; Munson and Burch, 2012; Pfeffer et al., 2005). Host miRNAs can also play a role in 

regulating HSV-1 infection. For example, the host miRNA miR-23a binds to the Interferon 

Regulatory Factor 1 (IRF1), downregulating signaling through the IRF1-mediated innate 

antiviral signaling pathway and augmenting viral replication (Ru et al., 2014). 
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Many of these HSV-1 miRNAs accumulate during lytic infection, with at least one miRNA 

(miR-H1) being expressed only during this time (Cui et al., 2006; Jurak et al., 2010; 

Munson and Burch, 2012; Umbach et al., 2009). While dispersed across the genome, there 

is a concentration of miRNAs encoded within the regions around the origin of replication 

(Jurak et al., 2010). Most of the virally derived miRNAs are persistently expressed 

throughout latency, with the majority derived from the LAT precursor or encoded in the 

LAT region (Jurak et al., 2010; Umbach et al., 2008; Umbach et al., 2009). These miRNAs 

are not essential but they may have some role in regulating the establishment and 

maintenance of latency in mice, as shown using LAT deletion viruses (Kramer et al., 2011). 

For example, miR-H2 is found within the LAT region and is antisense to ICP0, and 

knocking out miR-H2 leads to increased accumulation of ICP0 protein. This virus 

reactivates slightly faster following explant cultivation, but there was no effect on the 

establishment of latency as determined by viral DNA load in the TG (Jurak et al., 2014; 

Umbach et al., 2008). Downregulating this miRNA in transient assays did not have any 

effect on other immediate early HSV-1 genes (Umbach et al., 2009). Similarly, miR-H6 has 

been shown to downregulate ICP4 expression, and given its role in stimulating its 

expression of the viral lytic genes, it has been hypothesised that it may be involved in the 

maintenance of latency (Umbach et al., 2008). 

So far, determining the biological role of most miRNAs during HSV-1 infection has been 

difficult (Du et al., 2015). An investigation into which of the miRNAs were loaded onto the 

RNA-induced silencing complex (RISC), and therefore are likely to be biologically relevant, 

revealed that only a fraction of some of the most abundant viral-encoded miRNAs, such as 

miR-H1-5p and miR-H6-3p, are associated with RISC. Additionally, some miRNAs were not 

bound to the RISC at all, and are not likely to be functionally relevant (Du et al., 2015; 

Flores et al., 2013). Further, while some miRNAs are transcribed on the opposite strand to 

known viral RNAs that serve as their target, for most miRNAs the target, likely of host cell 

origin, remains unidentified (Du et al., 2015; Jiang et al., 2015; Jurak et al., 2010; Munson 

and Burch, 2012). Finally, there are substantial differences in the accumulation of RNAs in 

animal-based versus cell culture models of HSV-1 latency, making dissection of the role of 

miRNAs in regulating HSV-1 latency a challenging task (Du et al., 2015; Jurak et al., 2014).  

1.3.4 Chromatin control of latency and reactivation 

In contrast to lytic infection (refer to Section 1.2.4), the viral genome is stably associated 

with repressive heterochromatin during latency that is believed to maintain repression of 

viral gene expression (Deshmane and Fraser, 1989). Using chromatin immunoprecipiation 

(ChIP) assays, it has been shown that methylation of lysine 9 of histone 3 (metH3K9) and 
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metH3K4 of the ICP4 and TK promoters occurs during the establishment of latency, and 

was consistently maintained throughout latency. The modifications metH3K9 and 

metH3K4 are associated with heterochromatin and euchromatin, respectively. Since there 

was consistently more metH3K9 than metH3K4, the net result is likely repression of lytic 

viral gene expression and maintenance of latency (Wang et al., 2005b). Viral lytic gene 

promoters have also been shown to be associated with methylation of lysine 27 of histone 

3 (metH3K27) and macroH2A, markers of facultative heterochromatin. Both facultative 

and constitutive heterochromatin is thought to be widespread on the viral genome (Cliffe 

et al., 2009; Kwiatkowski et al., 2009). It should also be noted that methylation of viral 

DNA probably does not play a role in repressing viral gene expression during latency 

(Dressler et al., 1987; Kubat et al., 2004b). 

ChIP assays have also been used to show that the LAT promoter is enriched with the 

acetylated histone H3 (K9, K14) during latency, consistent with transcriptionally 

permissive chromatin (Kubat et al., 2004a; Kubat et al., 2004b). This was confirmed in the 

rabbit ocular HSV-1 infection model of latency, with the LAT region being more 

transcriptionally permissive than either of the lytic genes ICP27 and ICP0 (Giordani et al., 

2008). A similar study found that there was enrichment during latency of euchromatic 

markers on the LAT 5’ exon region relative to ICP0 and ICP4 promoters, but a significant 

increase in these markers on the ICP4 promoter region (Creech and Neumann, 2010). 

Overall, it seems likely that LAT exists in a bivalent chromatin state, with a balance of 

euchromatic and heterochromatic marks (Cliffe et al., 2009; Kwiatkowski et al., 2009). The 

boundary between the generally permissive chromatin environment around the LAT 

region relative to the repressive environment of the rest of the genome is maintained by 

chromatin insulator elements and silencing by nearby chromatin domains during latency. 

These candidate insulator elements have CCCTC sites that are bound by the CCCTC-

binding factor (CTCF) during latency in vivo (Amelio et al., 2006b).  

LAT itself has been implicated in maintaining a generally repressive chromatinised 

genome, with mutants that fail to express LAT exhibiting enrichment of modifications such 

as metH3K4 on lytic viral promoters (Cliffe et al., 2009; Wang et al., 2005b). Likewise, 

there was a decrease in enrichment of modifications such as dimethylation of metH3K9 

(Wang et al., 2005b). However, this situation is not straightforward, as in the absence of 

LAT, one study found an enrichment of metH3K27 on the viral genome, which is 

associated with facultative heterochromatin, while another study found a decrease in 

metH3K27. This was attributed by the authors of both studies to the differences in the 

strain of HSV-1 used as well as the site in which latency was established (Cliffe et al., 2009; 

Kwiatkowski et al., 2009). Also, in the rabbit ocular HSV-1 latency model, the LAT 
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enhancer region and ICP0 region appeared less transcriptionally permissive in the 

absence of LAT (Giordani et al., 2008). 

As would be expected, a role for chromatin modifications in reactivation from latency has 

also been found. Following explant induced reactivation of mice, there was a decrease in 

H3 (K9, K14) acetylation of the LAT enhancer and subsequent decrease in RNA abundance. 

This is followed by an acetylation of the ICP0 promoter (Amelio et al., 2006a). Likewise, 

using rabbits ocularly infected with the efficiently reactivation McKrae strain of HSV-1, but 

not the poorly reactivation KOS strain of HSV-1, chromatin remodeling was shown to be 

an early and essential step in the process of HSV-1 reactivation by transcorneal 

iontophoresis of epinephrine. There was decreased enrichment following reactivation of 

euchromatic markers on the LAT 5’ exon region, which could be correlated with a 

decrease in LAT transcripts. However, there was any increase in metH3K4 modifications 

on the ICP4, but not ICP0, promoter (Creech and Neumann, 2010).  

It has been shown that treatment of latently infected rat dorsal root ganglion (DRG) 

cultures with trichostatin A, a HDAC inhibitor, resulted in activation of previously silenced 

lytic gene promoters (Arthur et al., 2001). Similarly, treatment of mice with the HDAC 

inhibitor sodium butyrate led to reactivation of virus and a rapid decrease in H3 (K9, K14) 

acetylation of the LAT enhancer. This was correlated with an increase in H3 (K9, K14) 

acetylation of the ICP0 and ICP4 promoters (Neumann et al., 2007a; Neumann et al., 

2007b). It also causes a disruption of the CTCF binding to the CCCTC sites, which act to 

maintain a boundary between the transcriptionally repressive and permissive areas of the 

genome (Ertel et al., 2012). Similarly, the inhibition of demethylases that remove 

repressive marks on the HSV-1 genome reduced levels of induced reactivation in infected 

TG neuronal cultures by the withdrawal of nerve growth factor (NGF), although no one 

demethylase is able to completely block reactivation (Messer et al., 2015). 

1.3.5 The detection of rare lytic viral gene expression during latency 

As described previously, the classical definition of latency often precludes lytic viral gene 

expression during latency, encompassing both the detection of transcripts and protein. In 

fact, most, but not all, early reports failed to detect the presence of lytic viral transcripts or 

proteins during latency (Croen et al., 1988; Deatly et al., 1987; Devi-Rao et al., 1994; Green 

et al., 1981; Krause et al., 1988; Mitchell et al., 1994; Puga and Notkins, 1987; Speck and 

Simmons, 1991; Spivack and Fraser, 1987; Steiner et al., 1988; Stevens et al., 1987).  

Using more sensitive methods of detecting viral gene expression, including ISH and RT-

PCR, transcripts from all classes of lytic genes, namely ICP0, ICP4, gC and TK transcripts, 
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can be detected in murine TG during latency (Chen et al., 2002a; Chen et al., 1997; 

Feldman et al., 2002; Kramer and Coen, 1995; Kramer et al., 1998; Ma et al., 2014; Maillet 

et al., 2006; Pesola et al., 2005; Tal-Singer et al., 1997). The expression of lytic genes 

during latency is was thought to be associated with a high level of expression of these 

transcripts in a small fraction of latently infected neurons (Feldman et al., 2002). ICP0 and 

ICP4, but not glycoprotein B (gB), transcripts have also been detected in latently infected 

human ganglia (Derfuss et al., 2009; Derfuss et al., 2007). In rare cells, there is also 

evidence for virus replication or protein expression (Feldman et al., 2002; Green et al., 

1981; Margolis et al., 2007a; Sawtell, 2003). Further, recently it has been shown by single 

cell qRT-PCR-based analysis that transcripts associated with viral lytic genes can be 

detected in nearly two thirds of all latently infected neurons. More than half of these 

neurons contain transcripts from more than one HSV-1 kinetic class of lytic gene 

expression (Ma et al., 2014). Debate still surrounds the consequence of the detection of 

these transcripts. Namely, do they represent low level transcription of the viral genome, in 

opposition to the apparent global repression of the viral genome? Alternatively, do they 

represent aborted reactivation attempts? 

1.3.6 Initiation of viral gene expression following reactivation 

There are numerous stimuli that lead to reactivation, broadly categorised as stress, which 

initiate different signaling and gene expression cascades. Reactivation can be initiated 

following many global stimuli, including, but not limited to, transient hyperthermia, UV 

light, psychosocial stress, and immune suppression (Djuric et al., 2009; Laycock et al., 

1991; Padgett et al., 1998; Sawtell and Thompson, 1992b; Schubert et al., 1990). More 

specific reactivation stimuli, typically used in conjunction with in vitro models of HSV-1 

latency, include NGF withdrawal, HDAC inhibitors like trichostatin A and sodium butyrate, 

forskolin, capsaicin, inducible cAMP early repressor, protein kinase C activation by 

phorbol myristate acetate, activation of caspase 3 by C2-ceramide, and dexamethasone 

(Arthur et al., 2001; Camarena et al., 2010; Colgin et al., 2001; Du et al., 2011; Halford et al., 

1996b; Hunsperger and Wilcox, 2003a; Hunsperger and Wilcox, 2003b; Neumann et al., 

2007b; Smith et al., 1992). The application of these stimuli leads to the expression of viral 

genes, ultimately leading to an increase in viral genome copy number and, in some cases, 

the production of infectious virus. Although the characterisation of the subsequent viral 

gene expression is still largely incomplete, it is broadly organised into two different 

paradigms.  

In the first paradigm, specific viral proteins must be expressed to initiate the HSV-1 gene 

expression cascade after a reactivation stimulus. The best candidate viral protein is ICP0, a 
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promiscuous transactivator and the only viral protein known to initiate the production of 

infectious virus from quiescently infected cultures (Coleman et al., 2008). It has also long 

been appreciated that mutants that don’t express ICP0 fail to reactivate efficiently, 

although they can initiate the production of lytic proteins (Cai et al., 1993; Thompson and 

Sawtell, 2006). However, Thompson and Sawtell (2006) showed that if a similar latent 

load is established in mice by a virus lacking ICP0, then a similar number of antigen 

positive cells were detected following hyperthermia induced reactivation, suggesting that 

the primary trigger for reactivation was not ICP0. Other candidates include VP16 and 

ICP4, whose provision by way of adenoviral vectors is sufficient to reactivate latent HSV-1 

primary TG cultures (Halford et al., 2001). This is still a subject of some debate, as viruses 

which lack these proteins can produce infectious virus akin to wildtype virus following 

explant-induced reactivation (Steiner et al., 1990). Of particular interest is VP16, due not 

only to its role as a powerful transactivator, but also to its ability to initiate large scale 

chromatin remodelling (Arnosti et al., 1993; Herrera and Triezenberg, 2004; Kutluay and 

Triezenberg, 2009). Shortly after hyperthermic stress-induced reactivation in latently 

infected mice, VP16 expression can be detected, even in the absence of ICP0 and ICP4 

expression, or viral DNA synthesis (Thompson et al., 2009). It is difficult to reconcile the 

global changes induced by these reactivation stresses that lead to reactivation from only a 

relatively small population of latently infected neurons. 

Alternatively, in the second paradigm, viral gene expression is biphasic following a 

reactivation stimulus (Kim et al., 2012). Initial viral gene expression is disordered, with 

HSV-1 lytic genes of all expression classes expressed in the absence of prior protein 

synthesis (referred to as Phase I expression). There is also decreased expression of LATs 

and miRNAs during this time (Du et al., 2011; Kim et al., 2012). So, reactivation is initially 

characterised by a sudden derepression of the whole viral genome. After this time, the 

expression of viral proteins, such as ICP0, ICP4 and VP16, assists gene expression such 

that the traditional cascade of viral gene expression is established (referred to as Phase II 

expression). This is facilitated by VP16 translocating to the nucleus, where VP16 can exert 

its transactivating functions along with its cellular cofactors HCF-1 and Oct-1 (Kim et al., 

2012). The end result is the replication of the viral genome and production of infectious 

virus. 

1.3.7 Role of the host’s immune response in the maintenance of 

latency and prevention of reactivation 

The complexity of the intimate relationship between HSV-1 and its host is exemplified by 

the adaptive immune response to the latent virus. This is most obviously manifested as the 
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high frequency of reactivation of HSV-1 that results from immunosuppression as a result 

of cancer treatment or following transplantation (Djuric et al., 2009; Schubert et al., 1990). 

The interaction between the virus and the immune system is dominated by the CD8+ T cell 

response. 

As described in Section 1.1.4, CD8+ T cells infiltrate the ganglia of mice from five days p.i. 

where they are retained following the establishment of latency, although some have 

reported that this infiltrate is cleared over time (Gebhardt and Hill, 1988; Khanna et al., 

2003; Liu et al., 1996; Shimeld et al., 1995; Van Lint et al., 2005). Within HSV-1 infected 

C57Bl/6 mice, a large proportion of these cells are specific for the immunodominant 

epitope gB498, and non-HSV specific CD8+ T cells are selectively lost during latency 

(Khanna et al., 2003; Sheridan et al., 2009; St. Leger et al., 2011). Despite the presence of 

CD8+ T cells, very little neuronal loss or obvious pathology is observed (Tscharke and 

Simmons, 1999; Verjans et al., 2007). 

A newly defined memory CD8+ T cell subset, named resident memory T (TRM) cells, are 

important for controlling HSV-1 latency. Gebhardt and colleagues (2009) found this 

population of CD8+ TRM cells are resident in the skin and sensory ganglia during latent 

HSV-1 infection of mice and are in disequilibrium with the circulating lymphocyte pool 

(Mackay et al., 2012). Mackay and colleagues (2012) showed that inflammation is 

sufficient to draw these cells into a highly localised area of skin in the absence of antigen 

recognition, where they become lodged and provide protection against local challenge 

with virus. Further, CD8+ TRM cells can mount a proliferative response entirely within DRG 

following challenge by reactivation (Wakim et al., 2008c).  

Nearly all CD8+ T cells within latently infected ganglia express the early activation marker, 

CD69 and CD103, which functions in the survival and retention of these cells (Mackay et 

al., 2013). Later, the CD8+ T cells have a CD44hi phenotype, suggesting persistent 

activation. They also have a slow homeostatic turnover (Gebhardt et al., 2009). These cells 

have the capacity to produce IFN-γ and are gzmB+, indicating recent activation, with some 

cells show T cell receptor (TLR) polarization towards infected cells (Jiang et al., 2011; 

Khanna et al., 2003; Van Lint et al., 2005). By using bone marrow chimeras, it has been 

shown that the production of gzmB is completely dependent upon antigen presentation by 

parenchymal cells (Van Lint et al., 2005). IFN-α may also play a role in suppressing 

reactivation (De Regge et al., 2010). Inflammatory cytokines, including IFN-γ and TNF-α, 

and transcripts for molecules involved in chemoattraction, such as Chemokine (C-C motif) 

ligand 5, have all been detected during latency in the ganglia of HSV-1 infected mice and 
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humans (Cantin et al., 1995; Chen et al., 2000; Halford et al., 1996a; Halford et al., 1997; 

Liu et al., 1996; Shimeld et al., 1997; Stock et al., 2011; Theil et al., 2003a).  

It is highly likely that these CD8+ T cells are able to suppress reactivation. In ex vivo 

cultures of latently infected TG, both exogenous HSV-1 specific CD8+ T cells, or 

alternatively a gB498 specific CD8+ T cell clone, were able to suppress viral replication and 

cytopathic effect (CPE) in an MHC restricted manner (Khanna et al., 2003; Liu et al., 2000). 

However, viral genomes and some immediate early and early gene transcripts were still 

detectable in these cultures (Liu et al., 2000). The suppression of viral activity may be 

mediated in part by the IFN-γ that is produced by these cultures and augments the CD8+ T 

cell response (Liu et al., 2001). The addition of IFN-γ to ex vivo cultures of latently infected 

TG neurons reduced the frequency of reactivation by at least 50% and reduced the amount 

of CPE (Carr et al., 2009; Decman et al., 2005b; Liu et al., 2000). The addition of IFN-γ to 

these cultures was also associated with a reduction in the expression of ICP0 and gC 

(Decman et al., 2005b). Finally, using IFN-γ or IFN-γ receptor knockout mice in which 

normal levels of latency are established in the TG, reactivation following hyperthermic 

stress is enhanced, further implicating IFN-γ in the suppression of reactivation (Cantin et 

al., 1999). 

There is some evidence that gzmB is an important mediator of HSV-1 latency. Firstly, 

gzmB has been shown to mediate cleavage of ICP4 (Knickelbein et al., 2008). Using mouse 

neuroblastoma lines infected with HSV, treatment with gzmB decreased cleavage of 

caspase3 and increased neuronal survival rates. This did not hold in cell lines in which 

LAT was deleted, linking LAT with protection from gzmB -induced apoptosis (Jiang et al., 

2011). Secondly, latency is unstable in HSV-1 infected-perforin and gzmB deficient mice 

(Knickelbein et al., 2008).  

The role of CD8 T cells in regulating HSV-1 latency has been partially verified in humans, 

with the detection of CD8+ T cells in the trigeminal, geniculate and vestibular ganglia of 

HSV-1 latently-infected humans (Arbusow et al., 2010; Derfuss et al., 2009; Derfuss et al., 

2007; Theil et al., 2003a; Verjans et al., 2007). Some of these cells are found in the vicinity 

of or surrounding latently infected neurons (Derfuss et al., 2009; Theil et al., 2003a; 

Verjans et al., 2007). These cells have an activated phenotype, upregulating markers like 

CD69, gzmB and granzyme A (gzmA), and perforin, but lacked expression of the homing 

molecules C-C chemokine receptor type 7 and CD62L (Derfuss et al., 2007; Verjans et al., 

2007). Further, CD8αα+ T cells, which closely resemble the TRM CD8+ T cells identified in 

mice, have been found in the skin of humans infected with HSV-2. The presence of these 

CD8αα+ T cells was found to be correlated with increased virus control (Schiffer et al., 
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2010; Zhu et al., 2007; Zhu et al., 2013). These cells have direct cytotoxic action against 

newly infected cells in the skin, and produce antiviral cytokines (Zhu et al., 2007; Zhu et 

al., 2013). Therefore, this robust CD8+ T cell response at the skin is likely important for 

preventing virus reactivation and possible recrudescence. 

While there is no direct role for CD4+ T cells in the maintenance of latency, they do 

infiltrate the DRG and are detectable at low levels throughout latency in both mice and 

humans (Liu et al., 1996; Shimeld et al., 1995; Theil et al., 2003a). CD4+ TRM cells are also 

found in the skin, but unlike the CD8+ TRM cells their role requires interplay between 

macrophages, antigen recognition and the production of IFN-γ and other downstream 

chemokines (Iijima and Iwasaki, 2014). CD4+ TRM cells also show a different pattern of 

localisation in the dermis as a part of a wider recirculation, while CD8+ TRM cells are found 

lodged in the epidermis (Gebhardt et al., 2011; Zhu et al., 2007). Ablation of CD4+ T cells 

revealed a failure to maintain the latent state, as evidenced by increased viral genome 

load. There was also a lower frequency of IFN-γ and TNF-α producing CD8+ T cells, 

suggesting that CD4+ T cell help is required to avert functional compromise of CD8+ T cells 

(Frank et al., 2010).  

It is unlikely that antibody responses play a significant role in maintaining latency. There 

is a measureable antibody response during latency, with serum antibody levels in ocularly 

infected mice increasing until 30 days p.i. However, they then plateau throughout latency 

until at least 125 days p.i. (Halford et al., 1996a). Further, recurring mucocutaneous 

reactivations are associated with rising serum titers in humans (Zweerink and Stanton, 

1981). 

Finally, the innate immune response does have some role in regulating HSV reactivation. 

For example, it has been shown that plasmacytoid dendritic cells infiltrate the dermis of 

recurrent HSV-2 lesions in humans and are able to stimulate T cell proliferation (Donaghy 

et al., 2009). However, interaction of the innate immune system with HSV during latency 

and beyond is largely unexplored. 

 

1.4 Aims of this thesis 

The biology of HSV-1 is dominated by its ability to establish a latent infection within the 

host. However, latency is not established in isolation, and is preceded by a lytic infection 

that is characterised by viral replication, extensive lytic gene expression and the 

production of infectious virus. Therefore, the course of HSV-1 infection, both on a per cell 
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basis and for the entire animal, is dictated not just by current, but also past, events. There 

is evidence that some viral gene expression, largely limited to the immediate early class of 

gene expression, can precede the establishment of latency within some neurons, but the 

expression of on a handful of prototypic HSV-1 lytic genes has been studied so far 

(Proença et al., 2008; Proença et al., 2011). Additionally, it was recently reported that lytic 

gene transcription occurs at a low level and sporadic in many neurons, but there is much 

less evidence to suggest that there is production of viral protein during latency. 

Reporter genes such as the green fluorescent protein (GFP) and β-galactosidase (β-gal) 

have proved invaluable for tracking viral gene expression, particularly when using in vivo 

models of infection. However, as lytic gene promoters are silenced during latency, they are 

of limited utility for tracking gene expression during latency. More importantly, 

conventional reporters are unable to reveal prior gene expression that has been 

suppressed or that is transient or at a low level. Recently, a novel method for tracking viral 

gene expression was described that utilises ROSA26R reporter mice (Proença et al., 2008; 

Wakim et al., 2008b). ROSA26R mice contain a lacZ reporter gene that is separated from 

the constitutive ROSA promoter by a large insert containing the neomycin resistance gene 

as well as multiple stop codons, preventing the expression of lacZ. This insert is flanked by 

loxP sites, so the lacZ reporter will only be expressed following Cre-mediated 

recombination. By using HSV-1 to drive expression of cre, cells that experience viral 

promoter activity are able to be permanently marked and identified by this stable reporter 

gene expression (Figure 1-3). Therefore, this system is ideal for investigating the impact of 

prior lytic viral gene expression on the establishment of latency and beyond. Therefore, 

the aims of this thesis are: 

1. To develop and optimise methods to construct HSV-1 that express Cre 

recombinase under different classes of HSV-1 promoters. 

2. To determine the proportion of HSV-1 infected neurons that experience 

lytic viral gene expression and establish latency. 

3. To determine if there is an accumulation of neurons that have experienced 

lytic viral gene expression during latency. 

4. To examine ICP47 promoter activity during the establishment of latency 

that can lead to the production of viral protein, and to investigate whether 

increasing the level of presentation of a CD8+ T cell epitope can alter the 

progression of either the acute or latent HSV-1 infection. 
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Figure 1-3. ROSA26R mice can be used to permanently mark neurons latently 

infected with HSV-1. (A) ROSA26R transgenic mice encode the LacZ reporter gene 

under the ROSA26 promoter. Expression of LacZ is prevented by the presence of a loxP-

flanked neomycin insert. (B) Cre recombinase is encoded within the viral genome. (C) 

Once mice are infected with HSV-1 encoding Cre, Cre recombinase can mediate 

recombination between the loxP sites, allowing excision of the insert. (D) This allows 

for expression of β-gal. (E) A representative DRG taken from a ROSA26R mouse 

infected with HSV-1 expressing Cre that has been stained for the presence of β-gal with 

the substrate X-gal. 
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2.1 Materials 

2.1.1 Solvents 

DMSO Dimethyl sulfoxide 

Ethanol Ethanol (Merck). 

Methanol Methanol (Merck). 

N, N dimethylformamide N, N dimethylformamide (DMF; Sigma-Aldrich). 

Nuclease free water Nuclease free water (Ambion). 

Sterile water Sterile water (Baxter healthcare). 

RO water Water purified using Type 3 system (reverse osmosis). 

Ultrapure water Water purified using Type 1 system (analogous to MilliQ 

water; TKA). 

2.1.2 Buffers 

Colony cracking 

buffer 

1.5 mM sucrose (Amresco), 0.5% sodium dodecyl sulphate (SDS; 

Sigma-Aldrich) and 200 mM sodium hydroxide (Sigma-Aldrich) in 

ultrapure water 

EDTA 
0.5 M EDTA (Sigma-Aldrich) in ultrapure water, with the pH 

adjusted to 8.0 with sodium hydroxide pellets (Sigma-Aldrich). 

FACS PBS 1× phosphate buffered saline (PBS) supplemented with 2% foetal 

bovine serum (FBS; refer to Section 2.1.4). 

MgCl2 buffer 0.1 M magnesium chloride (Ajax FineChem) and 4.5 M β-

mercaptoethanol (Sigma-Aldrich) in ultrapure water. 

PBS 10× PBS (Invitrogen) was diluted in ultrapure water to 1× PBS. 

Red cell lysis 

buffer 

0.14 M ammonium chloride (Sigma-Aldrich) and 19 mM Trizma 

base (Sigma-Aldrich) in ultrapure water. The pH was adjusted to 

7.2, and the buffer was autoclaved prior to use. 
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RSB buffer 10 mM Trizma base, 10 mM potassium chloride (Sigma-Aldrich) 

and 1.5 mM magnesium chloride (Ajax FineChem) in ultrapure 

water. 

Sodium phosphate 

buffer 

0.1 M sodium phosphate buffer is made up of 0.1 M sodium 

phosphate dibasic dihydrate (Sigma-Aldrich) and 0.1 M sodium 

phosphate monobasic dihydrate (Merck) in ultrapure water. 

1 M Tris-Cl 1 M Trizma base in ultrapure water, adjusted to pH 8.0. 

1× T4 DNA ligase 

buffer 

10× T4 DNA ligase buffer (New England Biolabs), diluted as 

appropriate. 

1× TAE buffer 1× Tris-acetate-EDTA (TAE) buffer consists of 40 mM Trizma base, 

20 mM glacial acetic acid (Univar) and 1 mM EDTA (pH 8.0) in 

ultrapure water. 

1× TBE buffer 10× Tris-borate-EDTA (TBE) buffer consists of 89 mM Trizma 

base, 89 mM boric acid (Merck) and 2 mM EDTA in sterile water. 

This is autoclaved and diluted to 1× stock prior to use. 

1× ThermoPol 

buffer 

10× ThermoPol reaction buffer (New England Biolabs), diluted as 

appropriate. 

TE buffer 10 mM Trizma base pH 8.0 and 1 mM EDTA in ultrapure water. 

2.1.3 Media for bacterial culture 

Antibiotics Stock solutions were made up in ultrapure water prior to filter 

sterilisation. 100 μg/L ampicillin (Sigma-Aldrich) or 50 μg/mL 

kanamycin (Sigma-Aldrich) were added to LB media or agar 

after autoclaving and cooling when required. 

Glycerol 60% (v/v) glycerol (Sigma-Aldrich) in ultrapure water. 

Luria-Bertani (LB) 

broth 

10 g/L tryptone (Bacto), 5 g/L yeast extract (Bacto), 10 g/L 

sodium chloride (Bacto) in deionised water. 

LB agar  LB broth with 15 g/L Bacto-agar (Bacto).  
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Super optimal broth 

with catabolite 

repression (SOC) 

medium 

20 g/L tryptone, 5 g/L yeast extract, 0.5 g/L sodium chloride, 

2.5 mM potassium chloride, 20 mM glucose (Merck) and 10 mM 

magnesium chloride in ultrapure water. 

2.1.4 Media for cell culture 

FBS FBS (Serana). 

CMC-MEM 0.4% carboxymethylcellulose (CMC) in Minimum Essential Medium 

(MEM; no phenol red; Invitrogen) supplemented with 4 mM L-

glutamine, 5 mM HEPES, 50 µM 2-mercaptoethanol and 2% (v/v) FBS. 

DMEM Dulbecco’s Modified Eagle Medium (DMEM; high glucose, with phenol 

red; Invitrogen) was supplemented with 2 mM L-glutamine and 2% 

(v/v) or 10% (v/v) of heat-inactivated FBS for cell culture and dilution 

of virus (DMEM-2 and DMEM-10, respectively). 

MEM MEM (phenol red; Invitrogen) was supplemented with 4 mM L-

glutamine (Invitrogen), 5 mM HEPES (Invitrogen), 50 µM 2-

mercaptoethanol (MEM-0; Invitrogen) and 2% (v/v) or 10% (v/v) 

heat-inactivated foetal bovine serum (FBS; SAFC Biosciences) was used 

for cell culture and dilution of virus (MEM-2 and MEM-10, 

respectively). 

2.1.5 Reagents for molecular biology 

Acrylamide 40% acrylamide and bis Acrylamide (29:1) solution (Bio-

Rad). 

Agarose 0.8, 1 or 2% (w/v) UltraPure agarose (Life Technologies) in 

1× TAE buffer. 

Antarctic phosphatase Antarctic phosphatase with 10× reaction buffer (New 

England Biolabs). 

APS 10% (w/v) ammonium persulphate (APS; Bio-Rad) in 

ultrapure water. 
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BigDye terminator BigDye terminator for DNA sequencing (Life Technologies) 

with 5× reaction buffer was obtained from the Biomolecular 

Resource Facility, John Curtin School of Medical Research 

(JCSMR), the Australian National University (ANU). 

cDNA synthesis kit SuperScript VILO cDNA synthesis kit (Life Technologies). 

Chloroform Chloroform (Merck). 

Colony cracking marker 

mix 

0.6 mM potassium chloride (Sigma-Aldrich) and 0.1% (w/v) 

bromophenol blue (Merck) in ultrapure water. 

DNase DNase I recombinant, RNase free (Roche). 

6× DNA gel loading 

buffer 

0.25% (w/v) bromophenol blue (Merck) or xylene cyanol 

(Sigma-Aldrich) in 30% (v/v) glycerol (Sigma-Aldrich) in 

ultrapure water. 

DNA markers 100 bp and 1 kb DNA markers (New England Biolabs), 

supercoiled DNA ladder (Life Technologies) and 1 kb DNA 

extension ladder (Life Technologies). 

DNA polymerases Taq DNA polymerase with 10× ThermoPol buffer (New 

England Biolabs), and Phusion DNA polymerase with 5× HF 

or GC buffer (New England Biolabs). 

DNA staining solution SYBR Safe DNA gel stain solution (Invitrogen), at a 1 in  

10 000 dilution in RO water. 

dNTP mix 10 mM deoxyribonucleotide triphosphate (dNTP) mix 

(Bioline). 

DTT 100 mM dithioreitol (DTT). 

Geneclean spin kit Geneclean spin kit (MP Biomedicals). 

Glycogen 20 μg/μL UltraPure glycogen (Invitrogen). 

IGEPAL IGEPAL CA-630 (Sigma-Aldrich), also known as octyl phenyl-

polyethylene glycol, is chemically indistinguishable from 

Nonidet P-40, which is no longer commercially available. 
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InFusion HD cloning kit InFusion HD cloning kit (Clontech). 

LigaFast rapid DNA 

ligation kit 

LigaFast rapid DNA ligation kit (Promega). 

Phenol Phenol (Fluka). 

Phenol:chloroform Phenol:chloroform:isoamyl alcohol (25:24:1 ratio; Fluka). 

Plasmid MiniPrep kit Plasmid MiniPrep kit (Axygen). 

Plasmid MidiPrep kit Plasmid MidiPrep kit (Axygen). 

Potassium chloride 1 M potassium chloride (Sigma-Aldrich) in ultrapure water. 

qPCR mastermix 2× LightCycler480 probes master mix (Roche) for use in 

Roche LightCycler480 real-time PCR machine. 

Qubit assays Qubit dsDNA HS assay (Life Technologies) and Qubit RNA HS 

assay (Life Technologies). 

Restriction enzymes Various restriction enzymes (New England Biolabs). 

RNase inhibitor RNasin ribonuclease inhibitor (Promega). 

RNA isolation kit Two RNA isolation kits were used; the total RNA isolation kit 

(Promega) for medium scale RNA isolation (typically from 

cultured cells) and the RNAqueous micro kit (Ambion) for 

small scale RNA isolation from mouse DRG. 

RNA polymerase SP6 RNA polymerase (Promega). 

rNTP mix Ribonucleoside triphosphate (rNTP) mix (500 μM of each 

rNTP; Promega). 

Sodium acetate 3 M sodium acetate (Merck) in ultrapure water. 

Sodium carbonate 1 M sodium carbonate (Sigma-Aldrich) in ultrapure water. 

Sodium hydroxide 5 M sodium hydroxide (Sigma-Aldrich) in ultrapure water. 

10% SDS 10% (w/v) SDS (Sigma-Aldrich). 
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Sucrose Sucrose (Amresco). 

T4 DNA ligase 400 units/μL T4 DNA ligase (New England Biolabs) or 3 

units/μL T4 DNA ligase (Promega). 

TEMED N-N-N’-N’-tetramethylethylenediamine (TEMED; Biorad). 

2.1.6 Reagents for cell culture, immunology and virology  

Actinomycin D 20 mg/mL actinomycin D (Life Technologies) in methanol. 

Acyclovir 22.5 mM acyclovir (Sigma-Aldrich) in DMSO. 

Collagenase/DNase 
solution 

1 mg/mL Type IV Collagenase (at least 160 units/mL; 

Worthington) and 0.03 mg/mL DNase (at least 600 units/mL; 

Roche) in DMEM-2. 

Crystal violet 
staining solution 

2.3% (v/v) crystal violet (Sigma-Aldrich) in 20% (v/v) ethanol. 

Cycloheximide 100 mg/mL cycloheximide (Sigma-Aldrich). 

DDAO-galactosidase 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) β-D-

galactopyranoside (DDAO-galactosidase; Invitrogen). 

Glutaraldehyde 25% glutaraldehyde in water, Grade II (Sigma-Aldrich). 

Lipofectamine  Lipofectamine 2000 (Invitrogen). 

1× ONPG 4 mg/mL ortho-nitrophenyl-β-galactoside (ONPG; Sigma-

Aldrich) in 0.1 M sodium phosphate buffer. 

PFA 16% paraformaldehyde (PFA) in water (Electron Microscopy 

Sciences). This was diluted to 1% (w/v) PFA in PBS as required. 

Proteinase K 10 µg/mL proteinase K (Roche). 

Saponin 5% (w/v) saponin (Fluka) dissolved in sterile water. This was 

diluted 1 in 10 in FACS-PBS before use. 

Trypan blue Trypan blue solution, 0.4% (Invitrogen). 

Trypsin 0.05% (w/v) trypsin with 0.53 mM EDTA (Invitrogen). 
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2.1.7 Reagents for infection of mice with HSV-1 

Avertin 12.5 mg/mL 2,2,2-tribromoethanol (Sigma-Aldrich) and 2.5% (v/v) 

2-methyl-butanol (Sigma-Aldrich) in sterile water. This is then 

sterilised by filtration through a 0.22 µm filter (Millipore) and 

stored in the dark at 4°C for no more than 14 days before use. 

VeetTM depilatory 
cream 

VeetTM depilatory cream for sensitive skin (Reckitt Benckiser). 

2.1.8 Chemicals for removal of DRG and isolation and fixation of cells 

50% glycerol 50% (v/v) glycerol in 1× PBS. 

Permeabilisation buffer 2 mM magnesium chloride, 0.01% (w/v) sodium 

deoxycholate (Sigma-Aldrich), 0.02% (v/v) IGEPAL, 5 mM 

potassium ferrocyanide (Sigma-Aldrich) and 5 mM 

potassium ferricyanide (Sigma-Aldrich) in ultrapure water. 

PFA/glutaraldehyde 
fixative 

2% (v/v) PFA and 0.5% (v/v) glutaraldehyde (Sigma-

Aldrich) in 1× PBS. 

X-gal 40 mg/mL 5-bromo-4-chloro-indolyl-β-D-

galactopyranoside (X-gal; Bio Vectra) in DMF.  

X-gal staining buffer Permeabilisation buffer with 1 mg/ml 5-bromo-4-chloro-

indolyl-β-D-galactopyranoside (X-gal). 

2.1.9 Plasmid constructs 

All plasmid DNA was isolated using the Axygen MiniPrep or MidiPrep kit as described in 

Section 2.2.2.1. The plasmids used in this thesis are described in Table 2.1. Those plasmids 

that were produced during this thesis are described in Table 2.2. 
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Plasmid 
Name 

Description Source 

pTracer-
CMV/bsd 

Generic mammalian expression vector 
Purchased from 
Invitrogen, Life 
Technologies 

pT 456 
Carries the mCherry fluorescent protein coding 
sequence 

Provided by Dr. T. 
Newsome, the 
University of Sydney 

pIGCN21 
Contains the eGFP/Cre (eGC) fusion protein 
sequence (Lee et al., 2001) 

National Cancer 
Institute (NIH) 
Biological Resources 
Branch 

pUC57 
pLAT eGC 

Contains sequences homologous to the LAT region 
(HSV-1 17 119863 - 120364) with an eGFP/Cre 
fusion gene inserted behind an 
encephalomyocarditis virus (ECMV) internal 
ribosome entry site (IRES) followed by the Simian 
Virus 40 (SV40) polyA sequence 3at position 
120364, cloned into the pUC57 vector 

Purchased from 
GenScript 

pUC57 – 
pICP47 

w/o OriS 

Contains ICP47 promoter sequence (HSV-1 KOS 
145998-146497) with the sequence encoding the 
OriS (HSV-1 KOS 145533-145577) removed 

Purchased from 
GenScript 

pU26/7 

Contains sequences homologous to the UL26/UL27 
region of HSV-1 (HSV-1 KOS 51431 - 54154), with 
a multiple cloning site (MCS) inserted at position 
52809 

T. Stefanovic and Dr. 
D. Tscharke 
(unpublished) 

pCR-
Blunt II 

Generic expression vector containing the lethal 
ccdB gene fused to C-terminus of lacZα  

Purchased from 
Invitrogen, Life 
Technologies 

pUC57 
pICP47 
Venus 

Contains the ICP47 promoter sequence (HSV-1 
KOS 145998 - 146497) with the sequence 
encoding the OriS (HSV-1 KOS 145533 - 145577) 
removed, followed by the Venus fluorescent 
protein coding sequence and the bovine growth 
hormone (BGH) polyA sequence, cloned into the 
pUC57 vector 

Purchased from 
GenScript 

pUC57 
pICP0 mC 

Cre 

Contains the ICP0 promoter sequence (HSV-1 KOS 
1271 - 2238), followed by an mCherry/Cre fusion 
gene analogous to the eGFP/Cre fusion gene found 
in pIGCN21, followed by the BGH polyA sequence, 
cloned into the pUC57 vector 

Purchased from 
GenScript 

pUC57 
qICP47 

Contains a 64 bp fragment of ICP47 cloned behind 
the SP6 promoter in the pUC57 vector 

Purchased from 
GenScript 

 

Table 2-1. Description of plasmids used in this thesis. Details of plasmids used in 

this thesis that were already available or which I designed and purchased from 

GenScript. 
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Plasmid 
Name 

Description Source 

pCR-Blunt II 
Cre (R) 

Contains the coding sequence for the eGFP/Cre 
fusion gene inserted behind the SP6 promoter into 
the pUC57 vector 

S. Smith and Dr. D. 
Tscharke, 
unpublished 

pX330 
Contains the humanised coding sequence for the 
S.pyogenes cas9 gene as a part of a CRISPR array 
(Cong et al., 2013) 

Addgene plasmid 
42230 

pX330-mC 
Contains a guide RNA designed to target the 
mCherry coding sequence inserted into pX330 

T. Stefanovic and Dr. 
D. Tscharke 
(unpublished) 

 

Plasmid 
Name 

Description 

pT UL3/UL4 
Transfer vector containing sequences flanking the HSV-1 UL3/UL4 
intergenic region (HSV-1 KOS 10534 – 12682) with a MCS inserted at the 
HSV-1 genomic location 11649 (HSV-1 KOS) 

pT CMV 
IE_mC 

The vector pT UL3/UL4 with the coding sequence of the mCherry 
fluorescent protein inserted behind the Cytomegalovirus Immediate Early 
(CMV IE) promoter 

pT CMV 
IE_mC_BGH 

pT CMV IE_mC with the BGH polyA inserted in behind the mCherry gene 

pT eGC 
The vector pT UL3/UL4 with the coding sequence of an eGFP/Cre fusion 
gene followed by the BGH polyA 

pT pICP47_ 
eGC 

pT eGC with the ICP47 promoter sequence (HSV-1 KOS 145998 - 146497), 
with the sequence encoding the OriS (HSV-1 KOS 145533 - 145577) 
removed, inserted such that it directs expression of eGFP/Cre 

pT 
pICP6_eGC 

pT eGC with the ICP6 promoter sequence (HSV-1 KOS 85906 – 86166) 
inserted such that it directs expression of eGFP/Cre 

pT pgB_eGC 
pT eGC with the gB promoter sequence (HSV-1 KOS 55985 – 56282) 
inserted such that it directs expression of eGFP/Cre 

pT pC_eGC 
pT eGC with the CMV IE promoter sequence inserted such that it directs 
expression of eGFP/Cre 

pU3.0.5kbF 
Transfer vector containing ~1 kb total of sequence flanking the HSV-1 
UL3/UL4 intergenic region (HSV-1 KOS 11200 - 12179) with a MCS at 
position 11649 (HSV-1 KOS) 

pU3.1kbF 
Transfer vector containing ~2 kb total of sequence flanking the HSV-1 
UL3/UL4 intergenic region (HSV-1 KOS 10700 - 12722) with a MCS at 
position 11649 (HSV-1 KOS) 

 

Table 2-1 cont. Description of plasmids used in this thesis.  

Table 2-2. Description of plasmids constructed for use in this thesis.  
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Plasmid 
Name 

Description 

pU3.2kbF 
Transfer vector containing ~4 kb total of sequence flanking the HSV-1 
UL3/UL4 intergenic region (HSV-1 KOS 9803 - 13698) with a MCS at 
position 11649 (HSV-1 KOS) 

pU3.3kbF 
Transfer vector containing ~5.6 kb total of sequence flanking the HSV-1 
UL3/UL4 intergenic region (HSV-1 KOS 8689 - 14663) with a MCS at 
position 11649 (HSV-1 KOS) 

pU3.0.5kbF-
Venus 

pU3.0.5kbF with the ICP47 promoter sequence (HSV-1 KOS 145998 - 
146497), with the sequence encoding the OriS (HSV-1 KOS 145533 - 
145577) removed, inserted such that it directs expression of the 
fluorescent protein Venus, followed by a BGH polyA 

pU3.1kbF-
Venus 

pU3.1kbF with the ICP47 promoter sequence (HSV-1 KOS 145998 - 
146497), with the sequence encoding the OriS (HSV-1 KOS 145533 - 
145577) removed, inserted such that it directs expression of the 
fluorescent protein Venus, followed by a BGH polyA 

pU3.2kbF-
Venus 

pU3.2kbF with the ICP47 promoter sequence (HSV-1 KOS 145998 - 
146497), with the sequence encoding the OriS (HSV-1 KOS 145533 - 
145577) removed, inserted such that it directs expression of the 
fluorescent protein Venus, followed by a BGH polyA 

pU3.3kbF-
Venus 

pU3.3kbF with the ICP47 promoter sequence (HSV-1 KOS 145998 - 
146497), with the sequence encoding the OriS (HSV-1 KOS 145533 - 
145577) removed, inserted such that it directs expression of the 
fluorescent protein Venus, followed by a BGH polyA 

pT pICP0 mC 
Cre 

The vector pT UL3/UL4 with ICP0 promoter sequence (HSV-1 KOS 1271 - 
2238), followed by a mCherry/Cre fusion gene analogous to the 
eGFP/Cre fusion gene found in pIGCN21, and then the BGH polyA 
sequence inserted at the SpeI site 

pT pICP0_eGC 
The vector pT UL3/UL4 with ICP0 promoter sequence (HSV-1 KOS 1271 - 
2238), followed by an eGFP/Cre fusion gene and then the BGH polyA 
sequence inserted at the SpeI site 

pUC57 LAT 
pCmC 

Contains sequences homologous to the LAT region (HSV-1 17 119863 - 
120364) with the mCherry gene inserted behind the CMV IE promoter 
followed by the SV40 polyA sequence at position 120364, cloned into the 
pUC57 vector 

pU26/7 
pICP47 

pU26/7 with the ICP47 promoter sequence (HSV-1 KOS 145998 - 
146497), with the sequence encoding the OriS (HSV-1 KOS 145533 - 
145577) removed, inserted into the centre of UL26/UL27 region (HSV-1 
KOS 52809) 

pU26/7 
pICP47/Tdtom 

The fluorescent protein Tdtomato was inserted after the ICP47 
promoter, followed by the BGH polyA 

 
Table 2-2 cont. Description of plasmids constructed for use in this thesis.  
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Plasmid 
Name 

Description 

pU3.2kbF-
ESgBCre 

pU3.2kbF vector with an endoplasmic reticulum (ER)-targeted gB 
minigene under the control of the gB promoter sequence (HSV-1 KOS 
55985 – 56282) followed by the SV40 polyA, and in the opposite 
orientation there is the CMV IE promoter sequence inserted such that it 
directs expression of eGFP/Cre followed by a BGH polyA 

pX330-
minigB 

Contains a guide RNA designed to target the ER-targeting gB minigene 
coding sequence inserted into pX330 

pU3.2kbF-
gBCre 

pU3.2kbF vector with a minimal gB epitope sequence under the control of 
the gB promoter sequence (HSV-1 KOS 55985 – 56282) followed by the 
SV40 polyA, and in the opposite orientation there is the CMV IE promoter 
sequence inserted such that it directs expression of eGFP/Cre followed by 
a BGH polyA 

 

2.1.10 Oligodeoxynucleotides 

Oligodeoxynucleotides which were used on this study are listed in Table 2.3. All 

oligodeoxynucleotides were purchased from Sigma Genosys and were used from working 

stocks diluted to a concentration of 10 µM in sterile water. 

Primer Name Sequence 

0.5Lf Fwd GCTATGCATCAAGCTTACCCTGTTTATGGTGTCGTC 

0.5Rf Rev TGCATGCTCGAGCGGCCCTGTTGGTGATTATCGACTGTC 

1Lf Fwd GCTATGCATCAAGCTTCCTCGGGTCCATTGC 

1Rf Rev TGCATGCTCGAGCGGCCATTGACTCTACGGAGCTGG 

2.6Lf Fwd GCTATGCATCAAGCTTGGAGAGGGGGTATATAAACCAA 

2Lf Fwd GCTATGCATCAAGCTTCCGCCAGCCACACAC 

2Lf Seq Rev GTCCCAACCGATTCTAGAGTG 

2Rf Rev TGCATGCTCGAGCGGCCCACCAACTACTCGCAGAGC 

2Rf Seq Fwd GTAGTCGGCGTTTATGGC 

3Lf Seq Fwd AACACCCAGGAAACAGAAAC 

3Lf Seq Fwd AACACCCAGGAAACAGAAAC 

3Lf Seq Rev ACACACCCAGCCTTCACAGGT 

3Rf Rev TGCATGCTCGAGCGGCCCGACCCATCAACACCATC 

3Rf Seq Fwd ATCTGGCTGTTGAGGACGTAA 

 

Table 2-2. Description of plasmids constructed for use in this thesis.  

Table 2-3. Details of oligodeoxynucleotides used in this thesis. 
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Primer Name Sequence 

3Rf Seq Rev CCAGCCCGGCCTGACTAT 

BGH Lf GCGGCCGCAGAATTCCTGTGCCTTCTAGTTGCCAG 

BGH Rf II CCATTAAAGAACTAGCTGCTATTGTCTTCCCAATC 

BGH Seq Fwd AAGCCTTCGACGTGGAGG 

BGH Seq Rev GCCACCACCTGTTCCTGTAC 

bla seq AATAGGGGTTCCGCGCACAT 

CMV Fwd ATATCTGCAGACTAGTCCGTATTACCGCCATGCA 

CMV IE Lf ATATCTGCAGACTAGTGCCAGATATACGCGTTGACA 

CMV IE Rf GACTCGAGCGGCCGCAGTTAGCCAGAGAGCTCTGC 

CMV Rev CGCCCTTGCTCACCATGGTGGCGACCGGTAGC 

Consensus Lf Rev GCGGCCGCTGGTACCCAACAAACAACCAGCCAAAT 

Consensus Rf Fwd GGTACCAGCGGCCGCTCTTTAATGGACCGCCC 

Cre F CGTATAGCCGAAATTGCCAG 

Cre Lf Seq CACGACCAAGTGACAGCAAT 

Cre R CAAAACAGGTAGTTATTCGG 

Cre Rf Seq TGGCAATTTCGGCTATACGT 

ef-1 seq CTTCTCTAGGCACCGGTTCA 

eGFP Cre Lf II ATATCTGCAGACTAGTATGGTGAGCAAGGGCG 

eGFP/Cre Lf Seq TGGGGGTGTTCTGCTGGTAG 

eGFP/Cre Rf Seq CCACAACATCGAGGACGGCA 

EGFPnoMet GTGAGCAAGGGCGAGGAG 

ER Rev AGGTACATGATTTTAGGCTTGC 

FwdHSV-gBend ACACAAGGCCAAGAAGAAGG 

gB P Fwd TTGGATATCTGCAGATCAACGGGCCCCTCTT 

gB P Rev TGCTCACCATACTAGTCGAGCTCCCCGCAC 

GFP/Cre F GTTAACGCGGACTAGTCCGTATTACCGCCAT 

GFP/Cre R CATTAAAGAGCGGCCTGCTATTGTCTTCCCAATCC 

LAT CMV Fwd GCGCTCGCGGCGGCCGCCAGATATACGCGTTGACA 

LAT mC Rev TAAACAAGTTACTAGTTACTTGTACAGCTCGTCCA 

LAT R2 ATGGAGCCAGAACCACAGTG 

M13 Rev+ CAGGAAACAGCTATGAC 

mCfwd  CTACGACGCTGAGGTCAAGA 

 
Table 2-3 cont. Details of oligodeoxynucleotides used in this thesis. 
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Primer Name Sequence 

mCherry Lf GCGGCCGCTCGAGTCATGGTGAGCAAGGGCGAGGA 

mCherry Rf CCATTAAAGAACTAGTTTACTTGTACAGCTCGTCCA 

mCherry Rf II GAATTCTGCGGCCGCTTACTTGTACAGCTCGTCCA 

mCrev GTAGATGAACTCGCCGTCC 

minigB F TGCAATAAACAAGTTCTATCACAGCCGGGC 

minigB R GTGCGGGGAGCTCGAATGAGGTACATGATTTTAGG 

No ER Rev AGCTCGAATGTCCTCCAT 

noESF1 GGCTGGTTGTTTGTTGG 

noESF2 GAACTCGATGGAGGACATTCGAGCTCCCCGC 

noESR1 TCCTCCATCGAGTTCGC 

noESR2 ATGGCGGTAATACGGACTAG 

pgB F AATCATGTACCTCATTCGAGCTCCCCGCAC 

pgB R ACTAGTCCGCGTTAACTCAACGGGCCCCTCT 

pgB R ACTAGTCCGCGTTAACTCAACGGGCCCCTCT 

pICP0 mC Fwd CATACGACCCCCATGGTGAGCAAGGGCGAGG 

pICP0 mC Rev CAGTAAATTGGAGTTAACTGCAGAATTTTGAGCTCG 

pICP0 Seq Fwd ACTTGCAGAGGCCTTGTTCC 

pICP0 Seq Rev GGCTCCAAGCGTATATATGC 

pICP47 Seq Fwd CGGGACCGCCCCAAGGG 

pICP47 Seq Rev CCCGTTGGTCCCGGCGT 

pSC11lacZseq GTGCTGCAAGGCGATTAAGT 

pT Rev Cre-C AGGAATTCTGCGGCCCTAATCGCCATCTTCCAGCA 

pTracer bla TCTAGGTCTTGAAAGGAGTG 

ptracer CMV IE Rf GGCCATGTTATCCTCCTCGC 

ptracer CMV IE Rf GGCCATGTTATCCTCCTCGC 

pTracer EF1 TGTACTGAGAGTGCACCATA 

ptracer mC Lf GTACGGTGGGAGGTCTATAT 

ptracer UL3 Lf TTACACGCGATCTTCGGACG 

ptracer UL4 Rf CGCGGACACCATTTACATCA 

pX330 seq_F TGGACTATCATATGCTTACCG 

pX330 seq_R TAGATGTACTGCCAAGTAGGAA 

RevHSVgBend GACCAACGAGACCATCACG 

 
Table 2-3 cont. Details of oligodeoxynucleotides used in this thesis. 
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Primer Name Sequence 

RR1 P Fwd TTGGATATCTGCAGAACTCGTTGTTCGTTGACC 

RR1 P Rev TGCTCACCATACTAGGGCAAGTTTCCAAAGCAC 

Seq RevpEGFPN1 CTCGACCAGGATGGGCAC 

SeqT7pro TAATACGACTCACTATAGGG 

SV40 F TTGTTGGGTACCAGCCAGACATGATAAGATACATTG 

SV40 R CCCGGCTGTGATAGAACTTGTTTATTGCAGC 

Tdt Fwd TGATGACGGCCATGTTGT 

Tomato BGH Fwd CGGGAAAGATATCGCCTGCTATTGTCTTCCCAATCC 

Tomato BGH Rev CACTAGTGCGGCCGCATGGTGAGCAAGGGCG 

UL26 Left CGTTAACAACATGATGCTGCG 

UL26 Seq Rev CCCACCTGAGGGCGATAGTG 

UL27 Seq Fwd TTGTTGGGAACTTGGGTGTA 

UL27 Seq Rev ATGACCATGATTACGCCAAGC 

UL3 Lf TGCACTCTCAGTACAGTTACTAAACACGACCCTGA 

UL3 Rf ACTAGTCTGCAGATATCCAACAAACAACCAGCCAAAT 

UL3 Seq Fwd GCCGTCAAGAACTGTTATCC 

UL3 Seq Rev ATTGGCTCGGACGAGACGAA 

UL4 Lf GATATCTGCAGACTAGTTCTTTAATGGACCGCCCGCA 

UL4 Rf CTTTCAAGACCTAGAATTGACTCTACGGAGCTGGC 

UL4 Seq Fwd GTTTGTCTGCGTATTCCAGG 

UL4 Seq Rev CGTCGTCAACACCAACATCA 

 

2.1.11 Escherichia coli Strains 

Three strains of E. coli were used in this thesis, namely α-Select Chemically Competent 

Cells (Gold Efficiency, Bioline), XL10 Gold Chemically Competent Cells (prepared in house) 

and One Shot Stbl3 Chemically Competent E. coli (Invitrogen). α-Select cells were routinely 

employed, whereas XL10 Gold and Stbl3 cells were used when plasmids were low copy 

number or were likely to form a complex secondary structure, respectively. 

2.1.12 Mice 

Female specific pathogen-free C57Bl/6 or B6.129S4-Gt(ROSA)26Sortm1So/J (ROSA26R; a 

gift from Dr. Frank Carbone) mice were sourced from the Australian Phenomics Facility 

(APF; Canberra, Australia; Soriano, 1999). All mice were housed at the Wes Whitten 

Table 2-3 cont. Details of oligodeoxynucleotides used in this thesis. 
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Animal Facility, Research School of Biology, ANU according to ethical requirements, and 

were at least eight weeks of age prior to use. Food and water were provided, and cages 

were changed weekly or upon resolution of infection. All experiments were approved by 

the ANU Animal Ethics and Experimentation Committee under protocols A2011/001, 

A2011/015, A2013/037 and A2014/025.  

2.1.13 Cell lines 

All cell lines used in this study are listed in Table 2-4. Cells were maintained in MEM-10 or 

DMEM-10 at 37°C with 5% CO2 in culture flasks, and were subcultured twice a week. The 

cells were maintained as described in Section 2.2.10. 

Cell 
Line 

Origin Property Use 
Split 
Ratio 

293A 

Primary human embryonic 
kidney cells transformed 
with human adenovirus 5 
DNA 

Adherent 
For generating recombinant 
HSV-1 by transfection/ 
infection 

1 in 
12 

Vero 
African green velvet monkey 
kidney epithelial cells 

Adherent 

A) For generating 
recombinant HSV-1 by 
cotransfection of plasmid 
and viral DNA 
B) For plaque purification of 
recombinant virus 
C) For growing virus stocks 
D) HSV-1 titration, plaque 
morphology and replication 
analysis 

1 in 8 

Vero 
SUA 

Vero cells that have been 
stably transfected to contain 
the lacZ gene preceded by 
the neomycin 
phosphotransferase gene 
which is flanked by lox P 
sites, controlled by the CAG 
promoter 

Adherent 

For assessing 
recombination frequency 
following provision of Cre 
recombinase 

1 in 8 

HSV-
2.3.2E2 

The CD8+ T cell clone HSV-
2.3 fused with the BWZ.36 
cell line containing the 
NFAT-lacZ construct 

Semi-
adherent 

As effectors for use with the 
in vitro antigen presentation 
assays 

1 in 
10 

 

Table 2-4. Mammalian cell lines used in this thesis. For further details on Vero, 293A 

and MC57G cell lines, refer to the American Type Culture Collection (www.atcc.org), 

USA. Vero SUA, 293-Kb, DC2.4 cell lines and the HSV 2.3.2E2 hybridoma have been 

described previously (Mueller et al., 2002; Rinaldi et al., 1999; Shen et al., 1997; 

Tscharke et al., 2005).  

http://www.atcc.org/
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Cell 
Line 

Origin Property Use 
Split 
Ratio 

293-Kb 

293A cells that stably 
express H-2Kb under the 
control of the CMV IE 
promoter 

Adherent 
As stimulators for use with 
the in vitro antigen 
presentation assays 

1 in 12 

DC2.4 

Dendritic cell-like cell line 
generated from a C57Bl/6 
mouse which expresses H-
2Kb and H-2Db 

Adherent 
As stimulators for use with 
the in vitro antigen 
presentation assays 

1 in 16 

MC57G 

Fibrosarcoma cell line 
generated from a tumour 
arising in a C57Bl/6 mouse 
treated with 
methycholanthrene 

Adherent 
As stimulators for use with 
the in vitro antigen 
presentation assays 

1 in 14 

 

2.1.14 Viruses 

The viruses constructed in this study are listed in Table 2-5, and described in more detail 

in Chapter three. HSV-1 KOS and KOS.6β were kindly provided by Dr. F. R. Carbone 

(University of Melbourne, Australia). All were titrated prior to use. 

Virus Description Reference 

HSV-1 KOS Wildtype HSV-1 strain KOS Smith, 1964 

KOS6β 
KOS that expresses β-gal under the control of the UL39 
(encoding the protein ICP6) promoter 

Summers et 
al, 2001 

HSV-1 pC_mC 
KOS expressing mCherry under the control of the CMV 
IE promoter from the UL3/UL4 intergenic region 

Unpublished 

HSV-1 
pICP47_eGC 

KOS expressing an eGFP/Cre fusion gene under the 
control of the ICP47 promoter with the OriS deleted 
from the UL3/UL4 intergenic region 

Unpublished 

HSV-1 
pgB_eGC 

KOS expressing an eGFP/Cre fusion gene under the 
control of the UL27 (gB) promoter from the UL3/UL4 
intergenic region 

Unpublished 

HSV-1 
pICP6_eGC 

KOS expressing an eGFP/Cre fusion gene under the 
control of the UL39 (ICP6) promoter from the UL3/UL4 
intergenic region 

Unpublished 

HSV-1 pC_eGC 
KOS expressing an eGFP/Cre fusion gene under the 
control of the CMV IE promoter from the UL3/UL4 
intergenic region 

Russell et al, 
2015 

 

Table 2-4 cont. Mammalian cell lines used in this thesis. 

Table 2-5. Details of viruses used in this thesis.  
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Virus Description Reference 

HSV-1 
pICP0_eGC 

KOS expressing an eGFP/Cre fusion gene under the 
control of the α0 (ICP0) promoter from the UL3/UL4 
intergenic region 

Unpublished 

HSV-1 LAT 
pCmC 

KOS expressing mCherry gene under the control of the 
CMV IE promoter from the LAT region 

Unpublished 

HSV-1 
pLAT_eGC 

KOS expressing an eGFP/Cre fusion gene under the 
control of an IRES to dictate expression of this gene 
from the LAT promoter 

Unpublished 

HSV-1 
pICP47/Tdtom 

KOS expressing Tdtomato under the under the control 
of the ICP47 promoter with the OriS deleted from the 
UL26/UL27 intergenic region 

Russell et al, 
2015 

HSV-1 
ESminigB_Cre 

KOS expressing an eGFP/Cre fusion gene under the 
control of the CMV IE promoter. In the opposite 
direction an ER-targeted gB498 minigene is expressed 
under the gB promoter, from the UL3/UL4 intergenic 
region 

Unpublished 

HSV-1 
minigB_Cre 

KOS expressing an eGFP/Cre fusion gene under the 
control of the CMV IE promoter. In the opposite 
direction a cytosolic gB498 minigene is expressed under 
the gB promoter, from the UL3/UL4 intergenic region 

Unpublished 

 

2.1.15 Antibodies and immunological reagents 

The antibodies used in this study are listed in Table 2-6. When required, the cell culture 

supernatant from the 2.4G2 hybridoma cell line, which produces anti-mouse CD16/CD32, 

was used as a Fc receptor block. 

Antibody Species Clone 

Anti-mouse-CD8α-APC-Cy71 Rat 53-6.7 

Anti-mouse-CD62L-FITC2 Mouse MEL-14 

Anti-mouse-CD45.2-BV4213 Mouse 104 

Anti-mouse-CD4-PE-Cy74 Rat GK1.5 

Anti-human/mouse-GzmB-
AlexaFluor647 

Mouse GB11 

 

Table 2-5 cont. Details of viruses used in this thesis.  

Table 2-6. Details of commercially antibodies used in this thesis. All antibodies 

were sourced from Biolegend. 1APC-Cy7: allophycocyanin-cyanine 7. 2FITC: Fluorescein 

isothiocyanate. 3BV421: Brilliant Violet 421. 4PE-Cy7: phycoerythrin-cyanine 7 
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A dextramer consists of a dextran backbone with an optimised number of MHC molecules 

and a fluorochrome bound to it, allowing for the detection of antigen-specific T cell TCRs 

that bind the MHC-antigen complex (Batard et al., 2006). A dextramer was used in this 

thesis that was specific for the gB498 epitope (amino acid sequence SSIEFARL) in the 

context of the H-2Kb MHC allele and contained the phycoerythrin (PE) fluorochrome to 

enable detection by flow cytometry. 

 

2.2  Methods 

2.2.1 Growth and maintenance of bacteria 

E. coli were grown at 37°C overnight in liquid LB broth in a shaking incubator or on solid 

LB-agar plates supplemented with antibiotics as appropriate. Bacterial stocks were stored 

at -80°C as glycerol stocks (400 μL of 60% (v/v) glycerol and 600 μL of overnight culture).  

2.2.2 DNA purification 

2.2.2.1 Plasmid DNA isolation 

For most plasmids, plasmid DNA was isolated from 1.5 to 4 mL of liquid E. coli cultures 

using the Axygen plasmid MiniPrep kit according to the manufacturer’s instructions, 

including the optional W2 washing step. The DNA was eluted in 60 μL of sterile water. 

If a plasmid was low copy number, the transformed bacteria grew poorly or a large mass 

of DNA was required, DNA was extracted from 100 mL of liquid E. coli cultures using the 

Axygen MidiPrep kit according to the manufacturer’s instructions. DNA was eluted in 500 

μL of sterile water. 

2.2.2.2 Purification of PCR products 

PCR products were purified using the Gene Clean Spin kit according to the manufacturer’s 

instructions. The DNA was eluted in 15 μL of sterile water. 

In some circumstances, DNA was purified from an agarose gel to ensure that DNA of the 

correct size was isolated. After DNA gel electrophoresis (refer to Section 2.2.5), the 

agarose gel was stained with DNA staining solution and illuminated using an Invitrogen 

Safe Imager Blue-Light Transilluminator (Life Technologies). The bands containing the 

DNA fragment of the appropriate size were excised from the gel. The Gene Clean Spin kit 

was used to purify the DNA fragments from the gel according to the manufacturer’s 

instructions. The DNA was eluted in 15 μL of sterile water.  
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2.2.2.3 Crude plasmid isolation for size differentiation (colony cracking) 

Colony cracking was used to rapidly screen transformed bacterial colonies to identify 

clones carrying a plasmid of the correct size. This method was used when the insert was 

large and there was a substantial size difference between the parent vector and the newly 

constructed plasmid. Single bacterial colonies were selected from LB-agar plates and 

spotted onto a fresh LB-agar plate with the appropriate antibiotic, with the remainder 

resuspended in 40 μL 10 mM EDTA. Next, 50 μL of freshly made cracking buffer was added 

to each colony and incubated for five minutes at room temperature. Then, 10 μL of marker 

mix was added and incubated for five minutes on ice. The mixture was centrifuged at 

20200 g for three minutes, and approximately 30 μL of the supernatant was loaded onto a 

1% (w/v) agarose gel and run against the supercoiled DNA ladder (refer to Section 2.2.5). 

2.2.2.4 Purification of infectious HSV-1 DNA for transfection 

To generate infectious HSV-1 DNA for the cotransfection of viral and plasmid DNA to 

construct recombinant viruses (refer to Section 2.2.11.1), confluent Vero cell monolayers 

were infected at a multiplicity of infection (MOI) of 0.1 and incubated at 37°C and 5% CO2 

for 24 hours or until full CPE is evident. The cells were harvested in media and centrifuged 

at 820 g for 10 minutes at 4°C and the supernatant was discarded. The cell pellet was 

washed with cold PBS, before being resuspended in TE with 0.5% (w/v) SDS and 50 

μg/mL proteinase K, and incubated at 37°C overnight. This aqueous mix was then mixed 

with an equal volume of phenol and inverted carefully to mix the two phases. This mix was 

then centrifuged at 4300 g for 15 minutes to separate the two phases. The aqueous phase 

was then re-extracted with phenol:chloroform at least twice more. The final aqueous 

phase was then extracted with chloroform to remove trace phenol, before the DNA is 

precipitated by mixing the last aqueous phase with 0.1 volume of 3 M sodium acetate and 

three volumes of 100% ethanol. The DNA was pelleted by centrifugation at 5050 g for five 

minutes. The pellet was gently washed with 70% ethanol before being air dried and then 

suspended in an appropriate volume of TE and incubated on ice overnight. 

2.2.2.5 Crude virus DNA preparation from isolated plaques and viral stocks 

Viral DNA was prepared from isolated plaques to serve as the template for diagnostic PCRs 

(refer to Section 2.2.12). 96 well plates of confluent Vero cells were prepared and 75 µL of 

the virus from individual isolated plaques was added to each well as appropriate. The cells 

were incubated for two days at 37°C in 5% CO2. The media was then removed and the 

infected cell monolayers were washed with PBS before 100 μL of 10 μg/mL proteinase K 

in 1× ThermoPol buffer in sterile water was added to each well. The plates were then 
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frozen in a -80°C freezer and thawed to lyse cell membranes to release the virus. 

Alternatively, 10 μL of virus was mixed with 1× ThermoPol buffer in sterile water to a total 

volume of 100 μL. The plates were incubated at 56°C for 20 minutes, and then 85°C for 15 

minutes. The undiluted supernatant was used as template for diagnostic PCRs. 

2.2.2.6 Purification of HSV-1 DNA for use in whole genome digests 

To generate purified HSV-1 DNA for use in whole genome digests (refer to Section 2.2.4), 

confluent Vero cell monolayers were infected at an MOI of 0.1 and incubated at 37°C and 

5% CO2 for 24 hours or until full CPE is evident. The cells were harvested in media and 

centrifuged at 820 g for 10 minutes at 4°C to separate the supernatant and cellular debris. 

The supernatant was collected and stored on ice. The cells were then lysed with RSB 

buffer containing 0.5% (v/v) IGEPAL by incubation for ten minutes on ice. The nuclei are 

then pelleted by centrifuging this sample at 820 g for 10 minutes at 4°C. The supernatant 

was collected and the cell pellet was extracted again using RSB buffer containing 0.5% 

(v/v) IGEPAL. All of the supernatants were pooled and pelleted by centrifuging at 17 680 g 

for two hours at 4°C. The pellet was then resuspended in 1.6 mL of TE with 0.5% SDS and 

50 μg/mL proteinase K, and incubated at 37°C for 5 minutes. This aqueous mixture was 

divided into two separate aliquots and was then mixed with an equal volume of 

phenol:chloroform and carefully inverted until all phases were uniformly mixed. This mix 

was then centrifuged at 20200 g for 10 minutes to separate the two phases. The aqueous 

phase was then re-extracted with phenol:chloroform at least twice more. The DNA was 

precipitated by mixing the last aqueous phase with 0.1 volume of 3M sodium acetate and 

three volumes of 100% ethanol. The DNA was pelleted by centrifugation at 20200 g for 20 

minutes. The pellet was gently washed with 70% ethanol before being air dried and then 

resuspended in an appropriate volume of TE and incubated on ice overnight. 

2.2.2.7 Purification of nucleic acids by sodium acetate/ethanol precipitation 

To purify linearised plasmids prior to transfection (refer to Section 2.2.11), an 

ethanol/sodium acetate precipitation was performed to purify the DNA in a sterile 

environment. The DNA was precipitated by the addition of 0.1 volume of 3 M sodium 

acetate and three volumes of 100% ethanol and vigorous mixing. If the DNA did not 

immediately form a visible precipitate, it was left to incubate on ice for 15 minutes. The 

DNA was centrifuged at 20200 g for 20 minutes to pellet the DNA, and then washed with 

70% ethanol. The ethanol was removed in a clean environment within a biosafety cabinet 

and allowed to air dry for 15 minutes. The DNA was then resuspended in an appropriate 

volume of sterile DNA. 



81 

2.2.3 Polymerase Chain Reaction  

PCR was performed for several purposes, including molecular cloning, screening of 

recombinant viruses and amplification of viral genomic DNA for sequencing. PCRs were 

performed in either 20 or 50 μL reaction volumes using either an Eppendorf Mastercycler 

or ABI Veriti 96-well Thermocycler. PCR using high fidelity Phusion DNA polymerase was 

performed when the products were used for the production of recombinant viruses or 

sequencing. For all remaining applications, PCR was carried out using Taq DNA 

polymerase. The template for PCR was either purified plasmid (refer to Section 2.2.2.1) or 

viral genomic DNA (refer to Section 2.2.2.5), diluted as required in sterile water. 

To perform PCR using Phusion DNA polymerase, 1 unit of Phusion DNA polymerase, 1× 

Phusion HF buffer, 200 μM dNTPs, 0.5 μM of each forward and reverse primer and the 

appropriate volume (typically between 0.5 – 2 μL; usually about 1 ng) of template DNA 

were mixed together to a final volume of 20 μL with sterile water. If the desired DNA 

fragment was predicted to have a high GC content, the Phusion HF buffer was replaced 

with the Phusion GC buffer and supplemented with 4% DMSO, and the mass of template 

DNA used was reduced ten-fold. The samples were then run on a PCR machine using the 

following program, with the appropriate annealing temperature determined using the 

Thermo Scientific Tm calculator based on Breslauer’s thermodynamics1:  

Initial denaturation - 98°C for 3 min  

 Amplification and detection – 30 cycles of: 

a. Denaturation - 98°C for 10 s 

b. Annealing – the appropriate Tm for 30 s 

c. Extension - 72°C for 30 s per kb 

Cooling – hold at 4°C  

To perform PCR with Taq DNA polymerase, 1 unit of Taq DNA polymerase was added to 

1× ThermoPol buffer, 200 µM dNTPs, 0.5 µM of each forward and reverse primer, and 2 µl 

of DNA (usually about 1 ng of DNA) in a final volume of 25 µl in sterile water. Samples 

were then run on a PCR machine, using the following program: 

Initial denaturation - 95°C for 30 s  

 Amplification and detection – 30 cycles of: 

a. Denaturation - 95°C for 30 s 

b. Annealing – the appropriate Tm for 30 s 

c. Extension - 72°C for 1 min per kb 

Cooling – hold at 4°C  



82 

The appropriate annealing temperature was determined using the formula: 

Tm = (# of A and T bases) × 2 + (# of G and C bases) × 4 

2.2.4 Restriction enzyme digestion 

Restriction enzyme digests were used to linearise plasmids for cloning, diagnostic 

screening of newly generated plasmids, to linearise plasmids prior to transfection and for 

confirmation of the genomic structure of newly constructed viruses. Digests were carried 

out according to the manufacturer’s (New England Biolabs) instructions and incubated at 

the recommended temperature for one to 16 hours. When appropriate, restriction 

enzymes were inactivated by heating at 65°C, or as recommended, for 15 minutes. 

2.2.5 DNA gel electrophoresis 

To visualise PCR products or the resulting DNA fragments following restriction enzyme 

digest, these DNA fragments were separated by gel electrophoresis. To resolve fragments 

that were larger than 200 bp, a 0.8, 1 or 2% (w/v) TAE agarose gel was cast as 

appropriate. 0.5 μg of DNA ladder per lane was loaded into a well of each gel as 

appropriate for use as a molecular size standard. Samples were mixed with the 

appropriate volume of 6× DNA loading dye and loaded into the wells. Gels were run at 30 

to 100 V for 35 min to 6 hours as required in a horizontal electrophoresis apparatus (Bio-

Rad) filled with 1× TAE buffer. The gel was then post stained with DNA staining solution 

for 15 to 20 minutes and the gel was visualised using a UV transilluminator system 

(Vilber-Lourmat). The size and concentration of the resulting DNA fragments were 

estimated by comparison to the DNA ladder. 

To resolve DNA fragments smaller than 200 bp, 12% polyacrylamide gels were used to 

separate DNA fragments based on size. Gel plates were washed thoroughly with RO water, 

followed by 100% ethanol and allowed to air dry. 10 mL of the 12% polyacrylamide gel 

solution was prepared by mixing together 3.6 mL of acrylamide, 1.2 mL of 10× TBE, 200 

μL of 10% (w/v) APS, 10 μL of TEMED and 4.8 mL sterile water. The gels were cast in a 

Mini PROTEAN casting apparatus (Bio-Rad). Samples were mixed with the appropriate 

volume of 6× DNA loading dye and 10 μL was loaded to the wells along with 0.5 μg of a low 

MW DNA ladder per lane for use as a molecular size standard. Samples were 

electrophoresed in 1× TBE at 60 V for two hours on a Mini PROTEAN Tetra cell apparatus 

(Bio-Rad). The gel was then post stained with DNA staining solution for 15 minutes before 

visualisation of the gel using a UV transilluminator system. 
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2.2.6 Molecular cloning 

Two methods were used for the construction of plasmids during this project, namely 

InFusion cloning (Clontech) and standard ligation of digested or amplified DNA. Those 

plasmids that were difficult to clone due to troublesome secondary structure were 

purchased from GenScript.  

2.2.6.1 In-Fusion molecular cloning 

In-Fusion cloning is a recombination based cloning strategy that was used to insert one or 

two PCR products into a linearised plasmid in a single reaction. The plasmids that were 

constructed using the In-Fusion cloning method are described in Table 2-7 and 2-8. Each 

insert was amplified by PCR using a high fidelity polymerase from HSV-1 or plasmid DNA 

with the appropriate primers (Tables 2-7 and 2-8). These primers contain 15 nucleotide 

extensions at their 5’ end that are identical to the vector sequence flanking a unique 

restriction site in the vector or are complementary to a neighbouring PCR product. If more 

than two inserts were required, they were first joined together by splice overlap PCR to 

join them together before cloning. In splice overlap PCR, each fragment was amplified such 

that the overlapping sequences at the end were added. These amplified fragments with 

regions of homology on the two ends to be joined together, were then used as template 

DNA for another PCR with the external primers, such that they will knit together.  

Plasmid 
produced 

Vector details Insert(s) details 

Parental 
plasmid 

Forward 
primer 

Reverse 
primer 

Template 
DNA 

Forward 
primer 

Reverse 
primer 

pT 
UL3/UL4 

pTracer-
CMV/bsd 

pTracer 
bla 

pTracer 
EF1 

HSV-1 
KOS 

UL3 Lf UL3 Rf 

UL4 Lf UL4 Rf 

 

Table 2-7. Description of the strategy used to construct plasmid pT UL3/UL4 by In-

Fusion cloning. To linearise the pTracer-CMV/bsd, the vector was amplified using the 

primers described. The UL3 and UL4 fragments were amplified with 5’ end which are 

identical to the vector sequence flanking a unique restriction site in the vector or are 

complementary to the neighbouring PCR product. The three fragments were joined 

together by In-Fusion cloning. 
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Plasmid 
produced 

Vector details Insert details 

Parental 
plasmid 

Restriction 
enzyme(s) 

Template 
DNA 

Forward 
primer 

Reverse 
primer 

pT CMV IE_mC 
pTracer 

CMV/bsd 
SpeI 

pTracer 
CMV/bsd 

CMV IE Lf CMV IE Rf 

pT456 mCherry Lf mCherry Rf 

pT CMV 
IE_mC_BGH 

pT CMV 
IE_mC 

SpeI 

pTracer 
CMV/bsd 

CMV IE Lf mCherry Rf II 

pTracer 
CMV/bsd 

BGH Lf BGH Rf II 

pT eGC 
pT 

UL3/UL4 
SpeI 

pIGCN21 eGFP Cre Lf II pT Rev Cre C 

pTracer 
CMV/bsd 

BGH Lf BGH Rf II 

pT pgB_eGC pT eGC SpeI HSV-1 KOS gB P Fwd gB P Rev 

pT pICP6_eGC pT eGC SpeI HSV-1 KOS RR1 P Fwd RR1 P Rev 

pT pC_eGC pT eGC SpeI 
pTracer 

CMV/bsd 
CMV Fwd CMV Rev 

pUC57 LAT 
pCmC 

pUC57 
pLAT 
eGC 

SpeI and 
NotI 

pTracer 
CMV 

IE_mC 

LAT CMV 
Fwd 

LAT mC Rev 

pU26/7 
pICP47/Tdtom 

pU26/7 
pICP47 

NotI pCIGH3 
Tomato BGH 

Fwd 
Tomato BGH 

Rev 

pU3.0.5kbF 
pCR-

Blunt II 
HindIII and 

NotI 

HSV-1 KOS 0.5Lf Fwd 
Consensus Lf 

Rev 

HSV-1 KOS 
Consensus Rf 

Fwd 
0.5Rf Rev 

pU3.1kbF 
pCR-

Blunt II 
HindIII and 

NotI 

HSV-1 KOS 1Lf Fwd 
Consensus Lf 

Rev 

HSV-1 KOS 
Consensus Rf 

Fwd 
1Rf Rev 

 

Table 2-8. Description of the strategy used to construct plasmids using In-Fusion 

cloning. The cloning strategy used to construct each plasmid is described. The vector 

was linearised with the indicated restriction endonuclease. The insert(s) were amplified 

using the primers indicated, with sequences added onto the 5’ end that are identical to 

the vector sequence flanking a unique restriction site in the vector or are 

complementary to the neighbouring PCR product. If more than two inserts were 

inserted into the vector, they were first joined by splice overlap PCR. 
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Plasmid 
produced 

Vector details Insert details 

Parental 
plasmid 

Restriction 
enzyme(s) 

Template 
DNA 

Forward 
primer 

Reverse 
primer 

pU3.2kbF 
pCR-

Blunt II 
HindIII and 

NotI 

HSV-1 KOS 2Lf Fwd 
Consensus Lf 

Rev 

HSV-1 KOS 
Consensus Rf 

Fwd 
2Rf Rev 

pU3.3kbF 
pCR-

Blunt II 
HindIII and 

NotI 

HSV-1 KOS 2.6Lf Fwd 
Consensus Lf 

Rev 

HSV-1 KOS 
Consensus Rf 

Fwd 
3Rf Rev 

pT pICP0_eGC 
pT pICP0 
mC Cre 

NheI 
pT pICP0 
mC Cre 

pICP0 mC 
Fwd 

pICP0 GFP 
Rev 

pU3.2kbF-
gBCre 

pU3.2kbF
-ESgBCre 

KpnI and 
SpeI 

pU3.2kbF-
ESgBCre 

noESF1 noESR1 

noESF2 noESR2 

pU3.2kbF-
ESgBCre 

pU3.2kbF NotI 

pT pC_eGC GFP/Cre F GFP/Cre R 

pT 
pgB_eGC 

pgB F pgB R 

MVA p7.5 
ESmini 

(gB-498-
505) 

minigB F minigB R 

pT 
UL3/UL4 

SV40 F SV40 R 

 

Prior to cloning, the vector and insert DNA was coprecipitated, with 100 ng of vector DNA 

and a 2:1 molar ratio of insert to vector DNA. The DNA was precipitated by mixing 

together 1/10 volume 3 M sodium acetate, three volumes of 100% ethanol and 20 μg of 

glycogen, followed by vigorous mixing. The DNA was centrifuged at 20200 g for 15 

minutes to pellet the DNA, and then washed with 70% ethanol. The DNA pellet was 

allowed to air dry for 15 minutes, and then resuspended in 8 μL of sterile DNA. 

The In-Fusion HD cloning kit (Clontech) was used according to the manufacturer’s 

instructions. In general, a 2:1 molar ratio of insert to vector was used, with a final volume 

of 10 μL. 2.5 μL of the undiluted In-Fusion reaction mix was used for transformation into 

chemically competent E. coli by heat shock (refer to Section 2.2.8).  

 

Table 2-8 cont. Description of the strategy used to construct plasmids using In-

Fusion cloning.  
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2.2.6.2 Conventional ligation for molecular cloning 

DNA fragments that were unable to be amplified efficiently due to secondary structure 

were excised from the parental plasmid by restriction digest. The vector was linearised 

with enzyme such they produce complementary overhanging sequences. These plasmids 

were constructed using a conventional ligation strategy, with the details shown in Table 2-

9.  

Plasmid produced 
Parental 
plasmid 

Template plasmid 
Restriction 
enzyme (s) 

pT pICP47_eGC pT eGC pUC57 pICP47 w/o OriS SpeI 

pU26/7 pICP47 pU26/7 pUC57 pICP47 w/o OriS SpeI 

pU3.0.5kbF-Venus pU3.0.5kbF pUC57 pICP47 Venus KpnI 

pU3.1kbF-Venus pU3.1kbF pUC57 pICP47 Venus KpnI 

pU3.2kbF-Venus pU3.2kbF pUC57 pICP47 Venus KpnI 

pU3.3kbF-Venus pU3.3kbF pUC57 pICP47 Venus KpnI 

pT pICP0_mC Cre pT UL3/UL4 pUC57-pICP0 mC Cre SpeI 

 

The vector was first dephosphorylated using Antarctic phosphatase according to the 

manufacturer’s instructions (New England Biolabs). Briefly, 1× Antarctic phosphatase 

reaction buffer, 5 units of Antarctic phosphatase and 1 μg of linearised plasmid DNA were 

mixed to a final volume of 15 μL in sterile water and incubated for 15 minutes at 37°C. The 

enzyme was then heat inactivated by incubating at 70°C for five minutes.  

Prior to ligation, the insert and vector DNA was coprecipitated as described in Section 

2.2.6.1, with 100 ng of vector DNA and a 2:1 molar ratio of insert to vector DNA. This DNA 

was ligated using the LigaFast rapid DNA ligation system (Promega) according to the 

manufacturer’s instructions with three units of T4 DNA ligase. 2.5 μL of the undiluted 

ligation reaction was used for transformation into chemically competent E.coli by heat 

shock (refer to Section 2.2.8). 

Finally, to construct the plasmid pX330-minigB, single stranded oligodeoxynucleotides 

were annealed and cloned into the vector pX330 (as described by Cong et al., 2013). The 

vector pX330 was linearised using the restriction endonuclease BbsI (New England 

Biolabs) as previously described (refer to Section 2.2.4). The oligodeoxynucleotides S_ER 

Table 2-9. Description of the strategy used to construct plasmids by a 

conventional ligation method. The cloning strategy used to construct each plasmid is 

described. The vector and insert was linearised with the indicated restriction 

endonuclease and were cloned together using T4 DNA ligase.  
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and AS_ER (sequences CACCGGCCGCGCTGCAGACTGCCGCA and 

AAACTGCGGCAGTCTGCAGCGCGGCC, respectively) were annealed by mixing together 100 

μM of each oligonucleotide and 1× T4 ligation buffer (New England Biolabs) in sterile 

water, and incubating at 95°C for five minutes, before leaving to cool to room temperature. 

To ligate the oligodeoxynucleotides into the vector, approximately 25 ng of vector and   20 

μM of the annealed oligodeoxynucleotides were mixed with 10 units of BbsI, 4.5 units of 

T4 DNA ligase (New England Biolabs) and 1× T4 ligation buffer in a final volume of 15 μL 

in sterile water. This mix was then incubated at 37°C for one hour and 2 μL of the reaction 

was then used for transformation into Stbl3 competent cells by heat shock (refer to 

Section 2.2.8). 

2.2.7 Nucleic acid quantification 

For routine determination of DNA concentration, the DNA quantity was measured in 2 μL 

samples using a Nanodrop UV/Vis spectrophotometer (Thermo Scientific) or a BioSpec 

Analyzer (Shimadzu). To quantify nucleic acid concentration more accurately and 

sensitively for use in qPCR applications, a Qubit fluorometer (Life Technologies) was 

employed. To detect RNA, the Qubit RNA HS assay kit (Life Technologies) was used 

according to the manufacturer’s instructions. To detect DNA, the Qubit dsDNA HS assay kit 

(Life Technologies) was used as per the manufacturer’s instructions. 

2.2.8 Transformation by heat shock 

50 μL of α-Select Chemically Competent E. coli or XL10 Gold Chemically Competent E. coli 

were aliquoted in 14 mL polypropylene tubes (Falcon) and mixed with 2.5 μL of InFusion 

or ligation mixture, or 1 μL of purified plasmid. The bacteria were incubated on ice for 30 

minutes, and heat shocked at 42°C for 30 seconds. Next, the bacteria were placed on ice for 

two minutes, before the addition of 950 μL of SOC. The bacteria were allowed to recover at 

37°C for one hour with shaking. Between 50 and 200 μL of bacteria were plated onto LB-

agar plates with the appropriate antibiotics and incubated at 37°C overnight.  

Alternatively, 50 μL of OneShot Stbl3 competent cells (Invitrogen) were mixed together 

with 2 μL of the DNA ligation and were incubated on ice for 30 minutes. The bacteria were 

then heat shocked at 42°C for 45 seconds and then left on ice for two minutes. Next, 250 

μL of pre-warmed SOC was added to the vial before the bacteria were left to recover at 

37°C for one hour with shaking. 25 μL of cells were plated onto LB-agar plates with the 

appropriate antibiotics and incubated at 37°C overnight.  



88 

The transformants were then screened by colony cracking (refer to Section 2.2.2.3), and 

the insertion was confirmed by restriction digest of isolated plasmid DNA (refer to Section 

2.2.4) and DNA gel electrophoresis (refer to Section 2.2.5) followed by sequencing (refer 

to Section 2.2.9).  

2.2.9 DNA sequencing 

DNA sequencing reactions were carried out using Big Dye Terminator according to the 

ACRF Biomolecular Resource Facility (JCSMR, ANU) guidelines. Briefly, up to 20 ng of PCR 

product or 150 to 300 μg of purified plasmid was added to 1 µL of BigDye terminator, 3.2 

pmol of the appropriate primer, and 3.5 µL of reaction buffer, and made up to a total 

reaction volume of 20 µL with sterile water. The details of the oligonucleotide primers 

used in the sequencing reactions are found in Table 2-10. The sequencing reaction was 

then performed as follows: 

Initial denaturation - 96°C for 5 min  

 Amplification and detection – 30 cycles of: 

a. Denaturation - 96°C for 10 s 

b. Annealing – 50°C for 5 s 

c. Extension - 60°C for 4 min 

Cooling – hold at 4°C  

Primer Name Used to Sequence 

2Lf Seq Rev pU3.2kbF; pU3.3kbF; HSV-1 ESminigB_Cre; HSV-1 minigB_Cre 

2Rf Seq Fwd pU3.2kbF; pU3.3kbF; HSV-1 ESminigB_Cre; HSV-1 minigB_Cre 

3Lf Seq Fwd pU3.3kbF; HSV-1 ESminigB_Cre; HSV-1 minigB_Cre 

3Lf Seq Rev pU3.3kbF 

3Rf Seq Rev pU3.3kbF; HSV-1 ESminigB_Cre; HSV-1 minigB_Cre 

3Rf Seq Fwd pU3.3kbF 

BGH Seq Fwd pU26/7 pICP47/Tdtom 

BGH Seq Rev pU26/7 pICP47/Tdtom 

bla seq pT UL3/UL4; pT eGC; pT pgB_eGC; pT pICP6_eGC 

Cre Lf Seq 

pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pICP47_eGC; HSV-1 
pICP6_eGC; HSV-1 pgB_eGC; HSV-1 pC_eGC; pT pICP0 mC Cre; 
pU3.2kbF-minigB_Cre; HSV-1 ESminigB_Cre; pT pICP0_eGC; HSV-1 
pICP0_eGC; HSV-1 minigB_Cre 

 

 

Table 2-10. Details of oligodeoxynucleotides used in sequencing reactions. 
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Primer Name Used to Sequence 

Cre Rf Seq 

pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pICP47_eGC; HSV-1 
pICP6_eGC; HSV-1 pgB_eGC; pT pICP0 mC Cre; pU3.2kbF-minigB_Cre; 
HSV-1 ESminigB_Cre; pT pICP0_eGC; HSV-1 pICP0_eGC; HSV-1 
minigB_Cre 

ef-1 seq pT UL3/UL4; pT eGC; pT pgB_eGC; pT pICP6_eGC 

eGFP/Cre Lf Seq 

pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pICP47_eGC; HSV-1 
pICP6_eGC; HSV-1 pgB_eGC; HSV-1 pC_eGC; pU3.2kbF-minigB_Cre; 
HSV-1 ESminigB_Cre; pT pICP0_eGC; HSV-1 pICP0_eGC; HSV-1 
minigB_Cre 

eGFP/Cre Rf Seq 

pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pICP47_eGC; HSV-1 
pICP6_eGC; HSV-1 pgB_eGC; HSV-1 pC_eGC; pU3.2kbF-minigB_Cre; 
HSV-1 ESminigB_Cre; pT pICP0_eGC; HSV-1 pICP0_eGC; HSV-1 
minigB_Cre 

EGFPnoMet 
pU3.0.5kbF-Venus; pU3.1kbF-Venus; pU3.2kbF-Venus; pU3.3kbF-
Venus; pU3.2kbF-minigB_Cre; HSV-1 ESminigB_Cre; pT pICP0_eGC; 
HSV-1 pICP0_eGC; HSV-1 minigB_Cre 

ER no Met HSV-1 minigB_Cre 

FwdHSV-gBend pU26/7 pICP47/Tdtom 

m13 Rev+ pU26/7 pICP47/Tdtom 

mCfwd pT pICP0 mC Cre 

mCrev pT pICP0 mC Cre 

pgB R pU3.2kbF-gB_Cre 

pICP0 Seq Fwd HSV-1 pICP0_eGC 

pICP0 Seq Rev HSV-1 pICP0_eGC 

pICP47 Seq Fwd 
HSV-1 pICP47_eGC; pU26/7 pICP47/Tdtom; pU3.0.5kbF-Venus; 
pU3.1kbF-Venus; pU3.2kbF-Venus; pU3.3kbF-Venus 

pICP47 Seq Rev 
HSV-1 pICP47_eGC; pU26/7 pICP47/Tdtom; pU3.0.5kbF-Venus; 
pU3.1kbF-Venus; pU3.2kbF-Venus; pU3.3kbF-Venus 

pSC11lacZseq pU26/7 pICP47/Tdtom 

ptracer CMV IE Rf pT UL3/UL4; pT CMV IE_mC; HSV-1 pC_mC; pT pICP0 mC Cre 

ptracer mC Lf 
pT UL3/UL4; pT eGC; pT pgB_eGC; pT pICP6_eGC; pT CMV IE_mC; HSV-
1 pC_mC; pU3.2kbF-minigB_Cre; HSV-1 ESminigB_Cre; HSV-1 
minigB_Cre 

ptracer UL3 Lf 

pT UL3/UL4; pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pC_mC; HSV-1 
pICP6_eGC; HSV-1 pgB_eGC; HSV-1 pC_eGC; pU3.0.5kbF; pU3.1kbF; 
pU3.2kbF; pU3.3kbF; pT pICP0 mC Cre; pU3.0.5kbF-Venus; pU3.1kbF-
Venus; pU3.2kbF-Venus; pU3.3kbF-Venus; pU3.2kbF-minigB_Cre; 
HSV-1 ESminigB_Cre; pU3.2kbF-gB_Cre; HSV-1 minigB_Cre 

 
Table 2-10 cont. Details of oligodeoxynucleotides used in sequencing reactions. 
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Primer Name Used to Sequence 

ptracer UL4 Rf 

pT UL3/UL4; pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pC_mC; HSV-1 
pICP47_eGC; HSV-1 pICP6_eGC; HSV-1 pgB_eGC; HSV-1 pC_eGC; 
pU3.0.5kbF; pU3.1kbF; pU3.2kbF; pU3.3kbF; pT pICP0 mC Cre; 
pU3.0.5kbF-Venus; pU3.1kbF-Venus; pU3.2kbF-Venus; pU3.3kbF-
Venus; pU3.2kbF-minigB_Cre; HSV-1 ESminigB_Cre; pT pICP0_eGC; 
HSV-1 pICP0_eGC; HSV-1 minigB_Cre 

pX330 Seq F pX330-ER 

pX330 Seq R pX330-ER 

Seq RevpEGFPN1 

pT eGC; pT pgB_eGC; pT pICP6_eGC; HSV-1 pgB_eGC; pU3.0.5kbF-
Venus; pU3.3kbF-Venus; pU3.2kbF-minigB_Cre; HSV-1 ESminigB_Cre; 
pT pICP0_eGC; HSV-1 pICP0_eGC; pU3.2kbF-gB_Cre; HSV-1 
minigB_Cre 

Seq T7 Pro pU3.0.5kbF; pU3.1kbF; pU3.2kbF; pU3.3kbF 

SV40 F pU3.2kbF-gB_Cre 

Tdt Fwd pU26/7 pICP47/Tdtom 

UL26 Seq Rev pU26/7 pICP47/Tdtom 

UL27 Seq Fwd pU26/7 pICP47/Tdtom; pU3.0.5kbF; pU3.1kbF; pU3.2kbF; pU3.3kbF 

UL27 Seq Rev pU26/7 pICP47/Tdtom 

UL3 Seq Fwd 
HSV-1 pC_mC; HSV-1 pICP47_eGC; HSV-1 pICP6_eGC; HSV-1 pgB_eGC; 
HSV-1 pC_eGC; HSV-1 ESminigB_Cre; HSV-1 pICP0_eGC; HSV-1 
minigB_Cre 

UL3 Seq Rev 
HSV-1 pC_mC; HSV-1 pICP6_eGC; HSV-1 pgB_eGC; HSV-1 pC_eGC; 
pU3.0.5kbF; pU3.1kbF; pU3.2kbF; pU3.3kbF; HSV-1 ESminigB_Cre; 
HSV-1 pICP0_eGC; HSV-1 minigB_Cre 

UL4 Seq Fwd 
HSV-1 pC_mC; HSV-1 pICP47_eGC; HSV-1 pICP6_eGC; HSV-1 pgB_eGC; 
HSV-1 pC_eGC; pU3.0.5kbF; pU3.1kbF; pU3.2kbF; pU3.3kbF; HSV-1 
ESminigB_Cre; HSV-1 pICP0_eGC 

UL4 Seq Rev 
HSV-1 pC_mC; HSV-1 pICP47_eGC; HSV-1 pICP6_eGC; HSV-1 pgB_eGC; 
HSV-1 pC_eGC; HSV-1 ESminigB_Cre; HSV-1 pICP0_eGC; HSV-1 
minigB_Cre 

 

An ethanol/sodium acetate precipitation was performed to remove excess dye 

terminators from the sequencing reaction. 80 μL of a solution containing 75 mM sodium 

acetate, 3.125 mM EDTA and 75% ethanol was added to each 20 μL sequencing reaction 

and incubated at room temperature for 15 minutes to precipitate the extension products. 

The solution was centrifuged at 20200 g for 20 minutes to pellet the extension products, 

and then washed with 70% ethanol. Samples were dried and submitted to the ACRF 

Biomolecular Resource Facility (JCSMR, ANU) for sequencing. Vector NTI (version 11.0; 

Table 2-10 cont. Details of oligodeoxynucleotides used in sequencing reactions. 
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Life Technologies) and Chromas (Technelysium) were used for DNA sequence analysis. 

Sequences were analysed by comparison to the published HSV-1 KOS genome sequence 

(Accession #JQ673480, Macdonald et al., 2012) and the original assembled plasmid 

sequence. 

2.2.10 Preparation of mammalian cell lines 

The mammalian cell lines used in this study were described in Table 2-4. All cell culture 

and in vitro HSV-1 infections were incubated at 37°C in the presence of 5% CO2. Cell lines 

were subcultured twice per week at a split ratio that ensured cells would grow to form a 

confluent monolayer within three or four days (Table 2-4). For long-term storage, cells 

were resuspended in the appropriate media with 10% DMSO, slowly cooled and kept in 

liquid nitrogen. 

To subculture mammalian cells, media was removed and cells were washed gently with 

PBS to remove excess medium. The cells were then treated with trypsin for three minutes 

at 37°C or until all the cells detached. Then, the cells were diluted appropriately and 

transferred into new culturing flasks (Nunc), or 6- or 96- well flat bottomed tissue culture 

plates (Corning). Plates were incubated at 37°C with 5% CO2 until grown into a semi-

confluent or confluent monolayer as required. 

2.2.11 Generation of recombinant viruses 

The strategy used to generate recombinant HSV-1 produced in this study relies on 

homologous DNA recombination between a transfer plasmid containing the sequence of 

the desired insertion flanked by sequence homologous to the site of insertion in the viral 

genome, and the viral genome found within HSV-1 infected cells provided by one of two 

methods: cotransfection of viral and plasmid DNA (refer to Section 2.2.11.1), or 

transfection of plasmid DNA followed by infection with virus (transfection/infection; refer 

to Section 2.2.11.2). 

2.2.11.1 Cotransfection of viral and plasmid DNA to generate 

recombinant viruses 

In brief, a transfection mix was prepared by gently mixing 5 μg of viral genomic DNA and 

the appropriate mass of plasmid DNA in the required ratio in the required volume of 

MEM-0. The appropriate volume of Lipofectamine 2000 was resuspended in the 

appropriate volume of media as recommended by the manufacturer (Invitrogen) and 

incubated for five minutes at room temperature. The DNA was then mixed with the 

Lipofectamine mixture by gentle pipetting. This mix was then incubated at room 

temperature for 20 minutes. The medium on confluent 293A cell monolayers in six well 
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plates was replaced with 500 µL of MEM-0 and 500 µL of transfection mix was added to 

each well dropwise. This was incubated at 37°C with 5% CO2 for five hours. This inoculum 

was then replaced with 2 mL of CMC-MEM. The use of phenol red-free MEM avoids the 

autofluorescence associated with this pH indicator. The cells were then incubated for 

three days at 37°C with 5% CO2. 

To harvest the recombinant virus generated, the plates were observed using fluorescence 

microscopy for the formation of plaques (Olympus microscope CKX41, equipped with the 

reflected fluorescence illuminator CKX-RFA). All plaques were counted and fluorescent 

plaques marked with a pen on the bottom of the plates. Individual plaques were then 

selected and collected in 500 µL MEM-0. Alternatively, all cells were harvested. In both 

cases, the cells were frozen on dry ice and then thawed in a 37°C water bath to lyse the 

cells and release the virus. This was repeated another two times. This cell lysate was used 

for the isolation of the recombinant viruses by plaque purification (refer to Section 2.2.12). 

2.2.11.2 Infection/transfection method to generate recombinant viruses 

A transfection mix was prepared by gently mixing 3 µg of linearised plasmid in 180 µl of 

MEM-0 with 6 µL of Lipofectamine 2000 in 180 µL of MEM-0. The mixture of DNA and 

Lipofectamine was then incubated at room temperature for 20 minutes. The medium on 

confluent 293A cell monolayers in six well plates was replaced with 500 µL of MEM-0 and 

500 µL of transfection mix was added to each well dropwise. This was incubated at 37°C 

with 5% CO2 for five hours. The transfection mix was then replaced with HSV-1 KOS at a 

MOI of 0.01 PFU of virus to cells in MEM-0 and incubated at 37°C with 5% CO2 for a further 

two hours. The virus inoculum was then replaced with 2 mL of MEM-2 and incubated for 

three days at 37°C with 5% CO2.  

After two days, the cells were harvested. These cells were frozen on dry ice and then 

thawed in a 37°C water bath to lyse the cells and release the virus. This was repeated 

another two times. This cell lysate was used for the isolation of the recombinant viruses by 

plaque purification. 

2.2.12  Plaque purification for the isolation of recombinant 

viruses 

To isolate recombinant HSV-1 from its wildtype virus, plaque purification for the selection 

of the recombinant viruses was employed. This process was combined with fluorescent 

marker screening when possible. Briefly, the cell lysate from the transfection process 

(described in Section 2.2.11.1 and 2.2.11.2) was serially diluted in at least six five-fold 

steps with MEM-0. This was then added to confluent monolayers of Vero cells in six well 



93 

plates and incubated for two hours at 37°C with 5% CO2. This inoculum was then replaced 

with 2 mL of CMC-MEM per well so that maintain individual plaques are maintained. The 

plates were incubated for two days at 37°C with 5% CO2. Two days later, the plates were 

observed using an Olympus CKX41 microscope and all plaques were counted. If 

appropriate, recombinant plaques were identified by fluorescence microscopy, and the 

fluorescent plaques were marked with a pen on the bottom of the plates. The plaques were 

collected by scraping the cell monolayer with a 20 μL pipette tip and aspirating cells into 

the tip, and then transferring the cells into 500 µL MEM-0. Each sample was then frozen 

and thawed three times. The isolated plaques were then used to infect new plates for 

another round of plaque purification. After some rounds of plaque purification, the 

isolated plaques were analysed by diagnostic PCRs for the presence of recombinant and 

wildtype virus (refer to Section 2.2.3; Table 2-11).  

Virus 
Forward 
Primer 

Reverse 
Primer 

Amplified viral 
genome region 

Expected size of the 
PCR product (bp) 

HSV-1 
pC_mC 

pTracer 
UL3 Lf 

pTracer UL4 
Rf 

UL3/UL4 intergenic 
region 

502 (wildtype);  
2073 (recombinant) 

pTracer 
UL3 Lf 

pTracer CMV 
IE Rf UL3/UL4 intergenic 

region with insertion 
of mCherry cassette 

886 

pTracer 
mC Lf 

pTracer UL4 
Rf 

1277 

HSV-1 
pICP6_ 

eGC 

pTracer 
UL3 Lf 

pTracer UL4 
Rf 

UL3/UL4 intergenic 
region 

502 (wildtype);  
2757 (recombinant) 

UL3 Seq 
Fwd 

Seq 
RevpEGFPN1 

UL3/UL4 intergenic 
region with insertion 
of pICP6_eGC cassette 

1575 

Cre Lf Seq UL4 Seq Rev 1991 

HSV-1 
pgB_ eGC 

pTracer 
UL3 Lf 

pTracer UL4 
Rf 

UL3/UL4 intergenic 
region 

502 (wildtype);  
2073 (recombinant) 

UL3 Seq 
Fwd 

Seq 
RevpEGFPN1 

UL3/UL4 intergenic 
region with insertion 
of pgB_eGC cassette 

1612 

Cre Lf Seq UL4 Seq Rev 1991 

HSV-1 
pC_eGC 

pTracer 
UL3 Lf 

pTracer UL4 
Rf 

UL3/UL4 intergenic 
region 

502 (wildtype);  
3149 (recombinant) 

UL3 Seq 
Fwd 

Seq 
RevpEGFPN1 

UL3/UL4 intergenic 
region with insertion 

of pC_eGC cassette 

1945 

Cre Lf Seq UL4 Seq Rev 1991 

 

Table 2-11. Details of diagnostic PCRs used to identify the recombinant viruses 

constructed in this thesis. The names of the primers used to screen for the presence 

of recombinant, wildtype or parental viruses used in this thesis, with the expected size 

of the fragments generated. If only one fragment size is indicated, then wildtype virus 

would not be expected to amplify with the primers used. 
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Virus 
Forward 
Primer 

Reverse 
Primer 

Amplified viral 
genome region 

Expected size of the 
PCR product (bp) 

HSV-1 
pICP0_eGC 

pTracer 
UL3 Lf 

pTracer 
UL4 Rf 

UL3/UL4 intergenic 
region 

2073 (parent); 3492 
(recombinant) 

UL3 Seq 
Fwd 

pTracer 
CMV IE Rf 

UL3/UL4 intergenic 
region with insertion 
of mCherry cassette 
UL3/UL4 intergenic 
region with the ICP0 
promoter pICP0_eGC 

cassette 

1919 

Cre Lf Seq 
UL4 Seq 

Rev 
1995 

HSV-1 LAT 
pCmC 

ptracer mC 
Lf 

LAT R2 

LAT region with 
insertion of the CMV 

IE promoter mCherry 
cassette 

928 

HSV-1 
pLAT_ eGC 

eGFP/Cre 
Rf Seq 

Cre Rf Seq LAT region with 
insertion of the 
IRES/eGFP Cre 

cassette 

782 

Cre F Cre R 203 

ptracer mC 
Lf 

LAT R2 

LAT region with 
insertion of the CMV 

IE promoter mCherry 
cassette 

928 

HSV-1 
pICP47/ 
Tdtom 

UL26 Left 
BGH Seq 

Rev UL26/UL27 intergenic 
region with the ICP47 
promoter Tdtomato 

cassette 

1782 

Rev HSV 
gBend 

Fwd HSV 
gBend 

989 (wildtype); 
recombinant fails to 

amplify 

HSV-1 
ESminigB_ 

Cre 

pTracer 
UL3 Lf 

pTracer 
UL4 Rf 

UL3/UL4 intergenic 
region 

502 (wildtype);  
3670 (recombinant) 

Cre Lf Seq 
3Rf Seq 

Rev 

UL3/UL4 intergenic 
region with the 
ESminigB_Cre 

expression cassette 

2983 

HSV-1 
minigB_Cr

e 

3Lf Seq 
Fwd 

ER Rev 

UL3/UL4 intergenic 
region with the 
ESminigB_Cre 

expression cassette 

2298 

UL3 Seq 
Fwd 

No ER Rev 

UL3/UL4 intergenic 
region with the 

minigB_Cre 
expression cassette 

1423 

 

Table 2-11 cont. Details of diagnostic PCRs used to identify the recombinant 

viruses constructed in this thesis.  
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When the desired recombinant virus was found to be free of parent virus, a stock was 

grown (refer to Section 2.2.13). Where possible, the recombination and plaque 

purification process was performed twice in parallel to isolate two independent 

recombinant viruses. 

2.2.13 Preparation of virus stocks 

To prepare the initial seed stock of virus, a 25 cm2 flask of confluent Vero cells was 

inoculated with the virus from an isolated plaque in 2 mL of MEM-0 and incubated at 37°C 

and 5% CO2 for one hour. The inoculum was then replaced with MEM-2 and incubated at 

37°C with 5% CO2 for three days. The infected cells were then harvested and collected by 

centrifugation at 820 g for 10 minutes at 4°C. The supernatant was removed and cells 

resuspended in 500 µL of MEM-0. The cells were then subjected to three cycles of 

freeze/thawing by placing on dry ice until frozen and thawing in a 37°C waterbath to 

release the virus. If appropriate, a small fraction of this crude viral stock was removed and 

DNA was prepared (refer to Section 2.2.2.5). The appropriate region of insertion was then 

amplified and analysed by DNA sequencing to confirm that no errors could be identified in 

the inserted sequence or in the flanking HSV-1 sequence (refer to Sections 2.2.3, 2.2.5 and 

2.2.9). If the sequence of the desired region was confirmed, this virus would be designated 

as the seed stock. 

To prepare a master stock, a 75 cm2 flask of confluent Vero cells was seeded with 

approximately one quarter of the seed stock in 5 ml of MEM-2 and incubated at 37°C and 

5% CO2 for one hour. An additional 10 mL of fresh warm MEM-2 was then added to the 

flask. The cells were then incubated at 37°C with 5% CO2 for three days. The infected cells 

were then harvested and collected by centrifugation at 820 g for 10 minutes at 4°C. The 

supernatant was then removed and centrifuged at 17 684 g for 90 minutes at 4°C 

(supernatant-associated virus). The pellet was resuspended in 1 mL of MEM-0. Meanwhile, 

the cell associated virus was prepared by sonicating the cell pellet for 60 s at ~60% power 

(Branson 102 cup-horn sonifier). The cells were collected by centrifugation at 820 g for 10 

minutes at 4°C. The supernatant was reserved, and the disruption and collection of cells 

was repeated again. The cell- and supernatant-associated virus was then pooled and this 

master stock was then titrated. 

To prepare a working stock, five 175 cm2 flasks were seeded at an MOI of 0.01 as 

described for a master stock, and after three days, or when the cells of the flask had 

reached full CPE, the virus stock was harvested as previously described for the master 

stock. This working stock was then titrated and transferred into small aliquots. Virus 
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stocks were stored at -80°C when not in use. Once thawed, any remaining virus that was 

unused was discarded. 

2.2.14 Standard plaque assay for the titration of HSV-1 

A standard plaque assay was performed to determine the virus titre of newly prepared 

virus stocks (refer to Section 2.2.13), samples from growth curves (refer to Section 2.2.16) 

or homogenates of organs isolated from infected mice (refer to Sections 2.2.21 and 2.2.22). 

Firstly, duplicate ten-fold dilutions of virus stock were prepared in MEM-0. The medium 

was removed from two six well plates of confluent Vero cells, and 0.5 mL of the 

appropriate virus dilutions, typically ranging from 10-1 to 10-10, was added to the cells. The 

cells were incubated at 37°C and 5% CO2 for 90 minutes, with rocking every 15 minutes to 

ensure that all cells are evenly infected with virus. The inoculum was then replaced with 

CMC-MEM and incubated for 48 hours at 37°C and 5% CO2. The media was then removed 

and replaced with a crystal violet staining solution. After 15 minutes, excess staining 

solution was removed and plates were allowed to air dry. The stained plates were then 

visualised and counted using an Olympus CXK41 light microscope at 40× magnification. 

The virus concentration is calculated as the number of PFU per mL, and was calculated as 

an average of duplicate titrations for virus stocks. Duplication titrations that differed by 

more than two-fold were rejected and repeated.  

2.2.15 Quantification of in vitro fluorescent protein expression 

from HSV-1 by flow cytometry 

To quantify the expression of fluorescent proteins following transfection or infection of 

cells with a plasmid or virus designed to express a fluorescent protein, including enhanced 

GFP (eGFP), mCherry and Venus, a flow cytometry-based approach was used. If 

appropriate, a cell suspension was prepared via the typsinisation of adherent cells as 

previously described in Section 2.2.10. Up to 1 × 106 cells were transferred to 96 well 

round bottomed tissue culture plate (Falcon) and centrifuged at 462 g for 5 minutes at 4°C 

to pellet the cells. The cells were washed with PBS to remove excess media and were then 

fixed in 1% PFA by incubation at room temperature for 20 minutes. The cells were then 

centrifuged at 905 g for three minutes at 4°C to pellet the cells. They were then washed 

again with FACS-PBS, before being resuspended in 60 – 100 μL of FACS-PBS for flow 

cytometric analysis (refer to Section 2.2.30). 
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2.2.16 Viral in vitro growth curves 

2.2.16.1 Single step growth curves 

Confluent Vero cell monolayers in six-well tissue culture plates were infected with 5 × 106 

PFU virus in 1 mL MEM-0 (MOI of 5) for one hour at 37°C with 5% CO2. The unabsorbed 

virus was then removed and the cell monolayer was washed once with 1 mL of warm 

FACS-PBS. Next, 2 mL of MEM-2 was then added to each well. The 0 hour p.i. samples were 

harvested immediately after the addition of fresh media. The remaining plates were 

incubated for two, four, six, 12 and 24 hours before the cells were harvested. These cells 

were harvested by scraping them off the plates using cell lifters (Corning) and collecting 

them in the existing media. These samples were then subjected to three rounds of freezing 

and then thawing and titrated as described in Section 2.2.14. 

2.2.16.2 Multiple step growth curves 

Multiple step growth curves were performed by infecting confluent Vero cell monolayers 

with 1 × 104 PFU virus in 1 mL MEM-0 (MOI 0.01). The cells were incubated for one hour 

at 37°C with 5% CO2. The unabsorbed viruses were then removed and the cell monolayer 

was washed once with 1 mL of warm FACS-PBS and then replaced with 2 mL of fresh 

MEM-2. The 0 hour p.i. samples were harvested immediately after the addition of fresh 

media. At six, 24, 48 and 72 hours p.i. the cells were harvested and titrated as described in 

Section 2.2.14.  

2.2.17 Cycloheximide reversal and acyclovir inhibition assay 

Confluent Vero SUA cell monolayers were pre-treated with 100 μg/mL cycloheximide or 

50 μM acyclovir, or left untreated, for one hour at 37°C with 5% CO2. The cells were then 

infected with 1 × 106 PFU of virus in 500 μL of the appropriate drug (MOI 5). After 

incubation for one hour at 37°C with 5% CO2, the unabsorbed virus was removed and 

replaced with fresh media containing the appropriate drug. The cells were then incubated 

for six hours at 37°C, 5% CO2. The media containing cycloheximide was then removed and 

those cells were washed three times with media containing 5 μg/mL actinomycin D. The 

washed cells were then overlaid with 2 mL of MEM-2 containing 5 μg/mL actinomycin D. 

The cells were incubated for a further four hours at 37°C, 5% CO2. After this time, cell 

monolayers were photographed for the expression of eGFP at 400× magnification by 

fluorescence microscopy (Olympus microscope CKX41, equipped with the reflected 

fluorescence illuminator CKX-RFA, and Olympus DP20 digital microscope camera). The 

cell monolayers were then washed with PBS before being harvested with trypsin and 

transferred to a 96 well round bottomed plate (Falcon) for fixation. The cells were washed 
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with FACS-PBS, followed by PBS only, before being incubated with 1% PFA at room 

temperature for 20 minutes. The cells were then washed with FACS-PBS before being 

resuspended in 60 μL FACS-PBS for analysis by flow cytometry (refer to Section 2.2.30). 

2.2.18 Staining of infected Vero SUA cell monolayers for detection 

of β-gal expression 

Semi-confluent Vero SUA cell monolayers with approximately 8.2 × 104 cells per well in a 

24 well plate were infected with 4.1 × 105 PFU per well in 500 μL MEM-0 (MOI 5). After 

incubation for one hour at 37°C with 5% CO2, the unabsorbed virus was removed and the 

cell monolayer was washed with 500 μL of warm FACS-PBS. Next, 1 mL of MEM-0 was 

then added to each well. The 0 hour p.i. sample was immediately fixed, while the 

remaining samples were fixed at four, eight, 12, 16, 20 or 24 hours p.i. To fix cells, cell 

monolayers were washed with PBS, and overlaid with PFA/glutaraldehyde fixative. The 

cells were incubated at 4°C for at least one hour. The fixative was washed off with PBS, and 

cell monolayers were photographed for the expression of eGFP at 400× magnification by 

fluorescence microscopy (Olympus microscope CKX41, equipped with the reflected 

fluorescence illuminator CKX-RFA, and Olympus DP20 digital microscope camera). The 

permeabilisation buffer was then added to the cells and they were incubated at 4°C for 30 

minutes. This buffer was then replaced with fresh permeabilisation buffer containing 1 

mg/mL X-gal. After 16 hours, the buffer was removed, the cells were washed with PBS and 

the cell monolayer was overlaid with 50% glycerol. The cell monolayers were then 

photographed for the expression of β-gal by light microscopy without phase contrast 

(Olympus microscope CKX41 and DP20 camera). 

2.2.19 Infection of mice with HSV-1 

Female mice at least eight weeks of age were infected with 1 x 108 PFU of HSV-1 via tattoo 

on the flank (Russell et al., 2015) as a modification of the method developed by Simmons 

and Nash (1984). Mice were anesthetised by intraperitoneal (i.p.) injection of Avertin at a 

dose of approximately 250 mg/kg tribromoethanol using a 1 mL syringe (BD Biosciences) 

and 26G needle (BD Biosciences). The left flank was clipped from the dorsal to ventral 

midline, and depilated with VeetTM for sensitive skin to remove all hair. A small area of 

skin of the left flank (5 mm by 5 mm, or 25 mm2) situated above the dorsal tip of the 

spleen was tattooed for ten seconds using Swiss rotary tattoo machine (Pullman Tools) 

using a ten round shader tattoo needle that had been dipped in a virus solution at a 

concentration of 1 x 108 PFU/mL in PBS. Excess inoculum was wiped off the skin. Mice 

were then bundled in tissue until they regained consciousness to maintain adequate core 

body temperature. Mice were monitored for clinical score, as indicated by ruffled fur, 
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hunched body and activity levels (see Table 2-12), and for the development of lesions on 

the day of the infection, and then from day two p.i. until such time as lesions were fully 

resolved. A total score of less than six was considered mild, a score of between three and 

five was considered moderate. A score of six was considered severe. 

Criteria Grade 0 Grade 1 Grade 2 

Posture Normal Hunching noted only at rest 
Severe hunching impairs 
movement 

Activity Normal Mild to moderately decreased Stationary unless stimulated 

Fur texture Normal Mild to moderate ruffling 
Severe ruffling/poor 
grooming 

 

2.2.20 Harvesting tissue from mice 

Mice were euthanised by asphyxiation with CO2. All mice were swabbed with 80% ethanol 

prior to the removal of infected tissue. The DRG found on the ipsilateral side 

corresponding to spinal levels T5 to L1, located by their relationship to the ribs, were 

extracted using fine curved forceps DRG used for X-gal staining were placed into 50 µl of 

PFA/glutaraldehyde fixative for each DRG (refer to Section 2.2.23), while those used for 

titration or immunology experiments were pooled and placed into 800 µL of MEM-2 (refer 

to Section 2.2.22). Pooled DRG used for the extraction of nucleic acid were immediately 

snap frozen in a tube placed on dry ice (refer to Section 2.2.25.2). If required, skin was also 

excised as a 1 cm2 region or the entire lesion area and placed into 800 µl of MEM-2 (refer 

to Section 2.2.22). The spleen may also have been removed and collected in 2 mL of 

DMEM-2 (refer to Section 2.2.26). 

2.2.21 In vitro reaction of latent virus 

DRGs from spinal levels T5 to L1 were harvested from an infected mouse and pooled 

together (refer to Section 2.2.20). The pooled DRG were incubated at 37°C and 5% CO2 for 

five days. The DRGs were then homogenised in 1 mL glass tissue grinders (Wheaton) and 

subjected to three cycles of freeze/thawing by placing on dry ice until frozen and thawing 

in a 37°C waterbath. The titre of virus in DRGs was then quantified by a standard plaque 

assay (refer to Section 2.2.14). 

 

Table 2-12. Scoring scheme used to monitor clinical signs of systemic infection 

following HSV-1 infection. Symptoms for each of these criterion were categorised into 

three grades of severity. For symptoms within grades 0, 1 or 2, a mouse receives a 

score of 0, 1, or 2, respectively, with a possible total of 6 for all three criteria. 
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2.2.22 Titration of virus from skin and DRG 

Skin or pooled DRG from spinal levels T5 to L1 from each infected mouse were 

homogenized in MEM-2 in 1 mL glass tissue grinders. Homogenates were subjected to 

three cycles of freeze/thawing by placing on dry ice until frozen and thawing in a 37°C 

waterbath. Infectious virus was quantified by plaque assay on Vero cells (refer to Section 

2.2.14). 

2.2.23 X-gal staining of whole DRG for detection of β-gal 

expression 

Following removal of DRG from mice (refer to Section 2.2.20) they were placed directly 

into 50 μL of the PFA/glutaraldehyde fixative for an hour on ice. The DRG were then 

thoroughly washed with PBS three times to remove the fixative before being placed into 

the permeabilisation buffer for 30 minutes on ice. This was then replaced with fresh 

permeabilisation buffer containing 1 mg/mL X-gal added just prior to use. The DRG were 

stained overnight for 16 hours at 4°C. The DRG were then rinsed in PBS, followed by 

clarification in 50% glycerol in PBS at 4°C overnight. Then, the individual DRG were placed 

on slides, dissected to remove unnecessary tissue (with care taken to ensure that this does 

not disrupt any X-gal stained cells) and a coverslip was mounted carefully above them. 

DRG were examined and photographed using an Olympus CKX41 light microscope with 

attached Olympus DP20 digital microscope camera at 40× magnification without phase 

contrast. The number of β-gal+ cells per DRG was calculated as described in Section 

2.2.31.2. 

Although highly unlikely, it is possible that there could be expression of β-gal in ROSA26R 

mice in the absence of Cre expression. This could be either through the failure of the stop 

cassette to block expression of β-gal, or through recombination between the direct repeats 

of the loxP site that leads to the removal of the stop cassette (refer to Figure 1-3). To 

determine if this could account for the accumulation of β-gal+ cells during the 

establishment of latency in ROSA26R mice, groups of ROSA26R mice were infected with 

either HSV-1 pICP47_eGC (Cre+) or HSV-1 pICP47_Tdtom (Cre-). These mice were then 

culled at 20 days p.i., their DRG removed and β-gal expression was assessed (Figure 2-1). 

In the ROSA26R mice infected with HSV-1 pICP47_eGC, a large population of β-gal+ cells 

was observed. By contrast, for mice infected with the Cre- virus, HSV-1 pICP47_Tdtom, no 

β-gal+ cells were detectable. This confirms that β-gal expression is undetectable in 

ROSA26R mice in the absence of Cre expression. 
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Figure 2-1. β-gal expression is undetectable during latency in the absence of Cre 

expression. Groups of five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 

pICP47_eGC or pICP47_Tdtom. At 20 days p.i. mice were culled and innervating DRG 

(from spinal levels T5 to L1) removed and processed for measurement of β-gal 

expression. Circles show results for each mouse and bars mean±SEM. Data are pooled 

from two independent experiments (n = 10 per virus).  
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2.2.24  Detection of fluorescent protein expression in whole DRG  

To determine the number of cells within DRG that express fluorescent proteins like eGFP 

or Tdtomato, DRG were removed from mice infected with the appropriate virus (refer to 

Section 2.2.20) and were placed directly into 50 μL each of the PFA/glutaraldehyde 

fixative per DRG for an hour on ice. The DRG were then thoroughly washed with PBS three 

times to remove the fixative before being in 50% glycerol in PBS. The individual DRG were 

then placed on slides, dissected to remove unnecessary tissue and a coverslip was 

mounted carefully above them. DRG were examined and photographed using a Leica 

DM5500 light microscope with attached monochrome DFC365FX camera at 50× or 100× 

magnification. The number of fluorescence+ cells per DRG was calculated as described in 

Section 2.2.31.2. 

2.2.25 qPCR analysis 

2.2.25.1 Total RNA isolation from whole brain 

Immediately following collection of the brain, it was disrupted, quartered and snap frozen 

in tubes in a dry ice/ethanol bath. Samples were stored at -80°C until required. RNA was 

isolated using the Promega Total RNA Isolation System. Briefly, samples were 

homogenised in 1 mL RNA lysis buffer in 1 mL glass tissue grinders. This was divided into 

175 μL aliquots and the RNA was isolated as per the manufacturer’s instructions with the 

optional DNase treatment. A further 2 hour DNase treatment was performed on the eluted 

RNA as described in Section 2.2.25.3, prior to the precipitation of RNA as described for 

DNA in Section 2.2.2.7. The yield of RNA was then assessed using the Qubit fluorometer as 

described in Section 2.2.7. 

2.2.25.2 Total RNA isolation from pooled DRG 

Immediately following collection of DRG from spinal levels T13 to T8 they were snap 

frozen in tubes in a dry ice/ethanol bath. Samples were stored at -80°C until required. RNA 

was isolated using the RNAqueous micro kit (Ambion). Briefly, DRG were homogenised in 

100 μL of the lysis solution that contains guanidinium thiocyanate using a 1 mL glass 

tissue grinder on ice. RNA was then isolated from the lysate as per the manufacturer’s 

instructions with the optional post elution DNase treatment. 

As this DNase treatment was not sufficient to eliminate all viral DNA from the RNA 

samples, a further DNase treatment step was performed for 1 h as described in Section 

2.2.25.3. Given the very small quantity of RNA (less than 1 μg) that is extracted from these 
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samples, routine quantification of RNA and assessment of RNA quality by gel 

electrophoresis was not possible. 

2.2.25.3 Additional DNase treatment of RNA to eliminate residual DNA 

To completely eliminate DNA from the extracted RNA such that it was undetected by 

qPCR, a more robust DNase treatment step was required. A reaction mix was prepared 

containing approximately 0.1 μg RNA, 1× DNase incubation buffer (Roche), 20 U DNase 

(Roche), 20 U RNasin ribonuclease inhibitor (Promega) and nuclease free water (Ambion) 

to 30 μL. This reaction was incubated at 37°C for one to four hours, depending upon the 

quantity of RNA used. The enzyme was then heat inactivated by incubation at 75°C for 10 

minutes. 

2.2.25.4 cDNA synthesis 

cDNA synthesis reactions were performed using the SuperScript VILO cDNA synthesis kit 

(Invitrogen) according to the manufacturer’s instructions. This reverse transcriptase kit 

uses the SuperScript III reverse transcriptase and a random primer mix, which results in 

the high cDNA yields (Ståhlberg et al., 2004b). Briefly, 2 μL of RNA was mixed with 1× 

VILO reaction mix, 1× SuperScript enzyme mix, and made up to 20 μL with nuclease free 

water (Ambion). This was then incubated at 25°C for 10 minutes, followed by incubation 

at 42°C for 60 minutes. The reaction was terminated by incubation at 85°C for five minutes 

and stored at -20°C until it was required. 

2.2.25.5 Construction of RNA standards for qPCR assay 

Plasmid DNA was isolated and linearised with either HindIII or NotI (refer to Sections 

2.2.2.1 and 2.2.4). The resulting DNA fragment was analysed by agarose gel 

electrophoresis to confirm that the plasmid was fully linearised to prevent long run-on 

transcripts with multiple copies of the transcript in the same message (refer to Section 

2.2.5). To synthesise RNA, 2 μg of linearised plasmid DNA was mixed with 1× transcription 

optimised reaction buffer (Promega), 10 mM DTT (Promega), 100 U RNasin ribonuclease 

inhibitor, rNTP mix (500 μM each; Promega), and 40 U SP6 RNA polymerase (Promega). 

This mix was then incubated at 37°C for two hours. To eliminate plasmid DNA, a DNase 

treatment was performed as described in Section 2.2.25.3 for four hours. The RNA 

concentration was then quantified using the Qubit fluorimeter as described in Section 

2.2.7. 

The RNA was then diluted in ten-fold serial dilutions to the desired concentration for each 

step of the standard curve (Table 2-13). Using each dilution and 311 ng irrelevant RNA 
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(refer to Section 2.2.25.1), a series of cDNA synthesis reactions were carried out according 

to section 2.2.25.4. These standards were then diluted one in five in nuclease free water 

and 2 μL of each standard was then used in each qPCR reaction. 

 

 

 

 

 

 

 

 

 

 

2.2.25.6 Details of qPCR assay design 

All gene expression assays were designed by and purchased from Applied Biosystems. 

They were already optimised and further investigation of annealing temperature was not 

performed. The rbfox3 assay was a predesigned assay (assay ID: Mm01248771_m1; 

UniGene: Mm.341103) and the primer and probe sequence information is not disclosed. 

The probe was conjugated to the fluorescent reporter molecule VIC. 

To design the Cre assay, the sequence of the eGFP/Cre fusion gene based on the plasmid 

pIGCN21 was supplied to Applied Biosystems. This assay was also supplied as a 

predesigned assay (CRE_RECOM; assay ID: A17MR8), and the probe with conjugated to the 

fluorescent reporter molecule 6-carboxyfluorescein (6-FAM). The details of this assay are 

found in Table 2-14. 

For the detection of US12 transcripts (for simplicities sake, now referred to as ICP47 

transcripts), previously published primer and probe sequences were selected (Table 2-14; 

Ma et al., 2014). These probes were conjugated 5’ to the fluorescent reporter molecule 6-

FAM, with a 3’ Minor Groove Binder Non Fluorescent Quencher (MGBNFQ). The MGB 

Input RNA concentration for 
cDNA synthesis (copies/μL) 

Final copy number per 
qPCR reaction (copies) 

2.5 × 107 1 × 106 

2.5 × 106 1 × 105 

2.5 × 105 1 × 104 

2.5 × 104 1 × 103 

1.25 × 104 5 × 102 

6.25 × 103 2.5 × 102 

2.5 × 103 1 × 102 

Table 2-13. RNA copy number for qPCR standards. The required input RNA 

concentration for each cDNA synthesis reaction to construct standards with the final 

copy number per qPCR reaction shown. 
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moiety allows more stable binding of the probe to DNA, increasing the melting 

temperature of the probe (Kutyavin et al., 2000). 

Assay 
Primer/ 

probe 
Use 

Concentration 
(nM) 

Sequence 

CRE_ 
RECOM 

Forward 
primer 

Forward primer used to 
amplify eGFP/Cre 

900 
CGGCGGATCCGA

AAAGAAAA 

Reverse 
primer 

Reverse primer used to 
amplify eGFP/Cre 

900 
ACGCTAGAGCCT

GTTTTGCA 

Probe 
Hydrolysis probe that 
binds with the amplified 
eGFP/Cre region 

250 
6-FAM-

TTCACCGGCATC
AACG-MGBNFQ 

ICP47 

Forward 
primer 

Forward primer used to 
amplify US12 

650 
GTGCACGGCGGT

TCTG 

Reverse 
primer 

Reverse primer used to 
amplify US12 

650 
CGTACGCGATGA
GATCAATAAAAG

G 

Probe 
Hydrolysis probe that 
binds with the amplified 
US12 region 

250 
6-FAM-

CCGCCTCCCGGT
CCT-MGBNFQ 

 

2.2.25.7 qPCR analysis of viral transcripts within DRG 

When setting up all qPCR experiments, a unidirectional workflow pattern (pre- to post-

qPCR) was enforced, with physically separate laboratories utilised for the construction of 

mastermixes, isolation of RNA from tissues and subsequent processing, and the isolation 

and handling of plasmid DNA. In order to carry out absolute quantification of viral 

transcripts within DRG, the following experiment was carried out. The samples from each 

mouse were used in two assays to detect either Cre transcripts or US12 transcripts (which 

will be referred to as ICP47 transcripts hereafter) within the same run. Each reaction was 

performed in triplicate. The entire standard curve (as described in Section 2.2.25.5) was 

used in parallel on each plate. Each qPCR reaction to detect Cre transcripts contained 1× 

LightCycler 480 probes master mix (Roche), 2× rbfox3 gene expression assay, 1× Cre gene 

expression assay, and 3 μL of cDNA in a final volume of 20 μL. Each qPCR reaction to 

detect ICP47 transcripts contained 1× LightCycler 480 probes master mix, 2× rbfox3 gene 

expression assay, 250 nM ICP47 probe, 650 nM each of the ICP47 forward and reverse 

primers, and 3 μL of cDNA in a final volume of 20 μL. No template controls were included 

Table 2-14. Details of oligodeoxynucleotides used for qPCR analysis. The actual Tm 

of the probe is unknown due to the addition of the MGB moiety, though an estimate 

based on the TK-specific sequence is indicated. 
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for all assays on each run. The qPCR assays were performed with the Roche 

LightCycler480, using the following program: 

 Preincubation - 95°C for 10 min  

  Amplification and detection – 50 cycles of: 

a. Denaturation - 95°C for 15 s 

b. Annealing - 60°C for 30 s 

c. Extension - 72°C for 1 s 

Cooling – 40°C for 10 s 

Threshold cycle (CT) values were calculated using Roche LightCycler 480 software 

(version 1.5).  

2.2.26 Preparation of splenocytes from mice 

At seven days p.i., mice were culled and their spleens harvested (refer to Section 2.2.20). 

Individual spleens were gently homogenised through cell strainers in DMEM-2. The single 

cell suspensions of splenocytes were centrifuged at 462 g for five minutes at 4°C, and 

resuspended in red cell lysis buffer for five minutes. Approximately 25 ml of PBS was 

added to each sample, and cells were centrifuged at 462 g for five minutes at 4°C. The 

splenocytes were then resuspended in DMEM-10and viable splenocytes were counted 

using trypan blue staining. The concentration of splenocytes was then adjusted for each 

sample using DMEM-10, typically to 1 x 107 cells/mL.  

2.2.27 Preparation of cells from DRG for immunological analysis 

DRGs were collected from mice from spinal levels T5 to L1 (refer to Section 2.2.20) and 

placed directly into 1 mL of collagenase/DNase in DMEM-10. The DRG were trimmed 

using a scalpel blade under a dissecting microscope to remove axons and excess tissue. 

The DRGs were then incubated at 200 oscillations per minute (opm; Bioline shaking 

incubator) at 37°C for 60 minutes. The DRG were then gently ground through a 70 μM cell 

strainer and washed with excess FACS-PBS. The cells were centrifuged at 524 g for five 

minutes at room temperature, and resuspended in 100 μL of FACS-PBS for subsequent 

analysis. 

2.2.28 Surface staining and intracellular cytokine staining for 

gzmB 

For antibody staining of DRG-associated cells, 100 μL of a DRG cell suspension (refer to 

Section 2.2.27) or 1×106 splenocytes (refer to Section 2.2.26) were added to individual 

wells of a 96 well round bottomed plate as appropriate. The cells were centrifuged at 524 
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g for five minutes at 4°C and resuspended in 10 μL Fc block and 30 μL FACS-PBS. Then, the 

cells were incubated on ice for 15 minutes, before being washed with FAC-PBS and 

resuspended in 3 or 6 μL of the gB498-specific dextramer for the DRG and splenocytes 

samples, respectively, in a total volume of 40 μL. The mixture of cells and dextramer was 

incubated at room temperature for 10 minutes in the dark. Next, 40 μL of antibodies, 

namely anti-CD8α-APC-Cy7, anti-CD62L-FITC, anti-CD45.2-BV421 and anti-CD4-PE-Cy7 

(diluted 1 in 75 in FACS-PBS), were added to the cells. The cells were then incubated on ice 

in the dark for 30 minutes. The stained cells were washed with FACS-PBS, followed by PBS 

only, before incubation at room temperature for 20 minutes to fix the cells. The fixed cells 

were then washed repeated with FACS-PBS before staining with 50 μL of anti-gzmB-

AlexaFluor647 antibody (1 in 200 dilution in FACS-PBS in 0.25% saponin). The following 

day, cells were washed twice with FACS-PBS and resuspended in 60 μL FACS-PBS for 

analysis by flow cytometry (refer to Section 2.2.30). 

2.2.29 In vitro antigen presentation assay 

293-Kb, DC2.4 or MC57G cells (Table 2-4) in single cell suspension were mixed with the 

appropriate virus at an MOI of 5 in 500 μL of DMEM-0. The cells were gently agitated in a 

37°C waterbath for three minutes in a 4.5 mL round bottomed tube (Starstedt) before 

being incubated at 37°C with shaking at 200 opm for 30 minutes. The cells were then 

transferred into 10 mL of warm DMEM-10 in a 15 mL Falcon tube and were incubated for 

a further 5½ hours at 37°C. During the infection period, the cells were either rotated at 

four rpm using the MACSmix tube rotator (Miltenyi Biotec) or were gently mixed every 20 

minutes. 

The infected cells were collected by centrifugation at 462 g for five minutes at room 

temperature and adjusted for 1 × 104 (stimulator to effector ratio of 1:5), 5 × 103 (1:10), 1 

× 103 (1:50) and 5 × 102 (1:100) cells per well. Then, 100 μL of infected cells were 

cocultured with 5 × 104 effectors per well in a round-bottomed 96 well plate, in triplicate. 

In each case, uninfected cells served as stimulators for a negative control, while effectors 

stimulated with 0.125 μM synthetic gB498 peptide (sequence SSIEFARL; GenScript). The 

cells were incubated at 37°C with 5% CO2 for 12 hours. The cells were then washed twice 

with PBS and then resuspended in 100 μL/well 0.1 M sodium phosphate buffer. The plate 

was subjected to three cycles of freezing and thawing, before being centrifuged at 524 g 

for five minutes at 4°C. 75 μL per well of supernatant was added to a 96 well flat bottomed 

transparent tissue culture plate (Corning), with 1 μL of MgCl2 buffer and 22 μL of ONPG. 

This was incubated at 37°C for up to eight hours, before 100 μL 1 M sodium carbonate was 

added to each well to stop the reaction. The optical density at 420 nm was measured using 
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a Tecan Infinite M1000 PRO plate reader. The data was analysed as described in Section 

2.2.30.5. 

2.2.30 Analysis of fluorescence by flow cytometry 

Flow cytometry was used in this thesis to detect the expression of fluorescent proteins 

such as eGFP and mCherry, as well as fluorochrome-conjugated antibodies. In this thesis, a 

LSR-II Flow Cytometer (BD Biosciences) was used for data acquisition. An appropriate 

number of events were collected for each experiment, but typically at least 100 000 events 

were collected. The flow cytometry data was analysed as described in Section 2.2.31.4. 

2.2.31 Data analysis 

2.2.31.1 Bioinformatic analysis 

Vector NTI (Life Technologies) software was used to design cloning strategies and 

recombinant virus strains. Oligonucleotide primers were designed with the aid of 

NetPrimer software (Premier Biosoft). Vector NTI and Chromas (Technelysium) was used 

to analyse newly generated DNA sequences.  

2.2.31.2 Determination of the number of β-gal+ or fluorescent cells per DRG 

The images of whole DRG for the expression of β-gal or fluorescent proteins were 

prepared using ImageJ 1.45s software (Rasband, 1997-2012; Schneider et al., 2012). To 

determine the number of β-gal+ cells or fluorescent+ cells, images were imported in 

sequence and analysed using the cell counter plugin.  

2.2.31.3 Analysis of qPCR data 

In all qPCR assays, a standard curve was constructed and included in each run. The CT 

values were calculated using the Roche LightCycler 480 software. To account for run to 

run variation and variation in input RNA quantity, the expression of the transcript of 

interest was normalised relative to the endogenous rbfox3 reference gene. Next, to 

produce a standard curve, the mean CT values calculated for the standards were plotted 

against the logarithm of the HSV-1 RNA copy number of each standard. From this, a linear 

regression equation was obtained. To calculate the amplification efficiency (E), the 

following equation was used: 

E = 10-1/slope 

To convert this into a percentage of template that was amplified in each cycle (% 

Efficiency), the following equation was used: 
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% Efficiency = (E – 1) × 100 

The linear regression equations were also used to calculate the viral RNA transcript 

number using the CT values obtained for each sample. 

2.2.31.4 Flow cytometric analysis 

 Flow cytometry data was analysed with Flowjo 8.7.1 software (Tree Star). For each 

sample, events were gated to exclude doublets, debris and some dead cells on forward 

scatter (FSC) versus side scatter (SSC) plots. To analyse the data, the appropriate gates 

were applied to the samples as follows. 

To quantify the expression of fluorescent proteins following transfection or infection of 

cells with a plasmid or virus designed to express a fluorescent protein, such as eGFP, 

mCherry and Venus, cells were gated on a plot showing SSC by the fluorescent protein 

(Figures 2-2 and 2-3). If more appropriate, the results were also analysed as a histogram 

to illustrate the levels of fluorescent protein expression. 

To analyse the immunological data, samples were gated on a plot of SSC by CD45.2 

expression to gate the cells that are CD45.2+ (Figure 2-4). These cells were then gated on a 

plot of CD8 by CD4 expression to identify the cells that are CD8+CD45.2+. The CD8+ cells 

were next gated on a plot of gzmB by CD62L to identify the activated CD8+ T cells 

(gzmBhiCD62Llo). They were also gated on a plot of CD8 versus the gB498 dextramer to 

identify the gB498-specific CD8+ T cells (Figure 2-4). Backgrounds were determined using 

splenocytes isolated from a mock infected mouse, and were either subtracted from the 

final total or were presented seperately, as appropriate. These cells were then gated on a 

plot of gzmB by CD62L to identify the activated CD8+ T cells (gzmBhiCD62Llo). The number 

of gB498 specific CD8+ T cells (T) was calculated as follows: 

T = total splenocyte count × % CD45.2+ of all events × CD8+ of all CD45.2+ events × 

% gB498-specific of CD45.2+CD8+ events 

2.2.31.5 Analysis of antigen presentation data 

To determine the presentation of antigen by the in vitro antigen presentation assay, the 

percentage of maximal stimulation relative to gB498 peptide stimulation was determined. 

From each sample, a background value of either infected effector cells or mock infected 

cells was subtracted as appropriate. These values were then divided by the average OD420 

of three wells stimulated with the gB498 peptide as described previously and multiplied by 

100 to calculate the percentage stimulation. 
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Figure 2-2. The gating strategy used to identify eGFP+ cells. 293-Kb cells were 

infected with (A) HSV-1 pC_eGC or (B) mock infected with PBS, and incubated for six 

hours at 37°C, 5% CO2. The cells were then fixed and analysed by flow cytometry. To 

identify the eGFP+ infected cells, events were first gated on a SSC × FSC plot. Singlets 

were next gated on a plot of FSC (width signal) × FSC (area signal), followed by gating 

on a plot of SSC (width signal) × FSC (area signal). The eGFP+ events were then gated on 

a eGFP × SSC (area signal). The number in each plot represents the percentage of 

events of the gated population relative to the population shown in the plot. 
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Figure 2-3. The gating strategy used to identify Venus+ and mCherry+ cells. 293A 

cells were (A) transfected with pU3.0.5kbF-Venus and pX330 for five hours, followed 

by infection with infection with HSV-1 pCmC (MOI 0.01), (B) were transfected with the 

pUC3.0.5kbF-Venus and pX330 plasmids but were not infected, (C) untransfected but 

were infected with HSV-1 pC_mC (MOI 0.01) or (D) were not transfected or infected. 

They were incubated for three days at 37°C, 5% CO2. The cells were then harvested, 

fixed and analysed by flow cytometry. To identify the fluorescent infected cells, events 

were first gated on a SSC × FSC plot. Singlets were next gated on a plot of FSC (width 

signal) × FSC (area signal), followed by gating on a plot of SSC (width signal) × FSC 

(area signal). The mCherry+ events were then gated on a mCherry × SSC (area signal), 

while the Venus+ events were gated on a Venus × SSC (area signal). The number in each 

plot represents the percentage of events of the gated population relative to the 

population shown in the plot. 
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Figure 2-4. The gating strategy used to identify activated CD8+ T cells and 

activated gB498-specific CD8+ T cells. A C57Bl/6 mouse was mock infected with (A&C) 

PBS or (B&D) infected by tattoo with 1 × 108 PFU/mL HSV-1 minigB_Cre. After seven 

days, the CD8+ T cell response in the (A - C) spleen and (D) DRG was measured by gB498 

dextramer and CD62L surface staining with intracellular staining for gzmB. A&B were 

stained with 6 μL of dextramer, and C&D were stained with 3 μL of dextramer. To 

identify the antibody-bound cells, events were first gated on a SSC × FSC plot. Singlets 

were next gated on a plot of FSC (width signal) × FSC (area signal), followed by gating 

on a plot of SSC (width signal) × FSC (area signal). The CD45.2+ events were then gated 

on a CD45.2 × SSC (area signal) plot. The CD8+ events were then gated from the 

lymphocytes on a CD8 × CD4 plot. The gB498 dextramer events were then gated from 

this population on a CD8 × gB498 dextramer plot, while the activated CD8+ T cells were 

also gated on a gzmB × CD62L plot. For A&B, the activated gB498 CD8+ T cells were then 

identified based on a gzmB × CD62L plot, while for C&D the activated gB498 CD8+ T cells 

were identified based on a gB498 dextramer × gzmB plot as all activated cells in the 

periphery should be CD62Llo. 
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2.2.31.6 Statistical analysis 

The statistical approach taken in this thesis was developed in consultation with Dr. Terry 

Neeman of the Statistical Consulting Unit, ANU. Statistical analyses were performed using 

GraphPad Prism5 software or GenStat software. In general, when two groups of samples 

were compared, the unpaired Student’s t test was used to compare means. A one-way 

analysis of variance (ANOVA) was performed if more sample groups were to be compared, 

followed by Newman Kwel’s post-test to make pairwise comparisons. However, for the 

comparisons of the numbers of β-gal+ cells within the DRG of infected mice across different 

days, several assumptions for the use of an ANOVA are violated. Theoretically, the number 

of β-gal+ is a discrete variable and strictly should not be analysed using an ANOVA. 

However, biologically this data does behave as a continuous variable, and so for this 

reason the violation of this assumption was considered to be trivial. Further, to perform an 

ANOVA, the dependent variable should be approximately normally distributed, which may 

not be true. However, an ANOVA is relatively robust to violations of this assumption, and 

since it is likely that this data is normally distributed, this factor was disregarded 

(Schmider et al., 2010). Finally, and likely most importantly, an ANOVA assumes 

homogeneity of variances. Given that the group size is typically unequal in most of the data 

presented in this thesis, it should not be assumed that the variances are homogenous. To 

account for this, the data was transformed into logarithmic values and then the fold 

change was compared relative to the earliest time point using an ANOVA followed by a 

calculation of the least significant difference of the means (LSD; p < 0.05). When this was 

performed using the transformed data presented in Chapter 4 for analyses using HSV-1 

pgB_eGC and HSV-1 pICP47_eGC, those differences identified that were statistically 

significant (p < 0.05) were identical to those found when a one way ANOVA was 

performed with the untransformed values (p < 0.05). However, data transformed in this 

way can no longer be presented as raw numbers. Therefore, as a compromise, and to 

ensure that data was presented as collected in its native state, differences between two or 

more samples groups were compared by an ANOVA with pairwise comparisons made 

using the more conservative Bonferroni’s post-test, with significance denoted if p < 0.05. 

In many cases, the p value was less than 0.001, but in order to be more conservative in the 

data analysis, this was not denoted on the figures. When multiple viruses across different 

days were compared, a two-way ANOVA was performed followed by Bonferroni’s post-test 

to make pairwise comparisons. The difference between each pair was considered to be 

statistically significant when p < 0.05 overall and also for each pair. Although it is possible 

that there were some pairwise comparisons that were false negatives, this was deemed 

less problematic than false positives for the sake of this analysis. Finally, the number of β-



115 

gal+ cells per mouse on the same day p.i. with the same virus were pooled from separate 

experiments, and a fixed effects model was applied in which the experiment was identified 

as a block. It was found that there was minimal difference in the variance within each 

block and within each day. This meant that data across different experiments could be 

legitimately pooled for the purposes of statistical analysis. 
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3 | Development of methods used for the 

  construction of recombinant HSV 
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3.1 Introduction 

The original method for engineering HSV relies upon homologous recombination between 

a transfer plasmid that contains viral sequences flanking the desired insertion site and the 

virus genome in cultured mammalian cells (Roizman and Jenkins, 1985). Recombination 

between the transfer plasmid and the viral genome occurs at a relatively low rate, so 

efficient methods are required to select or screen the few recombinant viruses produced 

(Kolb and Brandt, 2004; Ramachandran et al., 2008; Tanaka et al., 2004). As an alternative, 

recombineering of HSV genomes propagated as bacterial artificial chromosomes (BACs) 

has been used as a rapid, efficient method of generating recombinant HSV without the 

need to plaque purify the resulting virus (Borst et al., 2004; Gierasch et al., 2006; 

Horsburgh et al., 1999; Saeki et al., 1998; Stavropoulos and Strathdee, 1998; Tanaka et al., 

2003). However, viruses recovered from these BACs often contain residual BAC sequences 

in the viral genome that can lead to a loss of gene function, depending on the site of 

insertion (Horsburgh et al., 1999; Saeki et al., 1998; Stavropoulos and Strathdee, 1998). 

Cre/loxP recombination can be used to remove these BAC sequences, but a single residual 

loxP site remains at the site of BAC insertion and excision, which might be problematic 

when the ROSA26R/Cre system is used (Gierasch et al., 2006; Tanaka et al., 2003). 

Further, the HSV-1 genome contains palindromic sequences that can be unstable in 

bacteria (Horsburgh et al., 1999; Post et al., 1980). It has been reported that major 

deletions or rearrangements have not occurred during serial passage of the HSV genome 

in BACs but more minor changes would probably be overlooked (Gierasch et al., 2006; 

Horsburgh et al., 1999). As a result, recombinant HSV generated using a BAC based 

method may have attenuated viral growth, particularly in vivo, and altered pathogenesis 

(Horsburgh et al., 1999; Saeki et al., 1998; Stavropoulos and Strathdee, 1998).  

Since it is highly desirable for the viruses used in this thesis to resemble wild type virus, 

both in vitro and in vivo, a homologous recombination based method was chosen for the 

construction of these recombinant viruses. Further, many of the viruses required for use in 

this thesis are designed to incorporate a selectable marker, typically a fluorescent protein, 

facilitating the selection of the recombinant virus (Tanaka et al., 2004). The generation of 

recombinant HSV typically involves cotransfection of high quality HSV-1 genomic DNA and 

transfer plasmid DNA, followed by plaque purification to obtain the desired recombinant 

virus (Balliet et al., 2007; Tanaka et al., 2004). Alternatively, another simpler variation of 

this method relies upon transfecting cells with the transfer plasmid and then infecting 

these cells with virus as a means of providing the viral genome, referred to as 

transfection/infection (Orr et al., 2005). However, few details on the use of the latter 

method have been published. While the transfection/infection method not commonly used 
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to engineer HSV-1, it is a method often used to engineer poxviruses, which have a non-

infectious, large dsDNA genome (Falkner and Moss, 1990; Mackett et al., 1982; Wong et al., 

2011).  

The recently developed CRISPR/Cas9 system for genome editing exploits the type II 

prokaryotic clustered regularly spaced palindromic repeats (CRISPR) adaptive immune 

system that provides acquired immunity for bacteria and most archaea against plasmid 

DNA and viruses by targeting DNA in a sequence specific manner (as reviewed by Horvath 

and Barrangou, 2010). The CRISPR/Cas9 system relies on a RNA guide (gRNA) and GG 

protospacer adjacent motif (PAM) contained within an associated CRISPR RNA transcript 

and the Cas9 nuclease. These form a complex and cleave double stranded DNA at target 

sequences matching those of the gRNA (Jinek et al., 2012). These breaks can be repaired 

by either non-homologous end joining or homologous recombination when a suitable 

template is provided (Cong et al., 2013; Jinek et al., 2012; Mali et al., 2013). The 

CRISPR/Cas9 system has been used for genome editing of a range of cell lines and 

organisms as diverse as human cell lines, Danio rerio (zebrafish), Drosophilia, mice and 

model plants like Arabidopsis thaliana (Cong et al., 2013; Gratz et al., 2013; Hwang et al., 

2013; Li et al., 2013; Mali et al., 2013). The CRISPR/Cas9 genome editing tools were 

recently combined with the transfection/infection based method for generating HSV by us 

and others, greatly facilitating the construction of recombinant HSV-1 (Bi et al., 2014; 

Russell et al., 2015; Suenaga et al., 2014). We also compared the improvement in 

recombination frequency associated with CRISPR/Cas9 targeting to optimised 

transfection/infection methods (refer to Section 3.3.2; Russell et al., 2015). 

Therefore, the aim of this chapter was to develop an efficient system based on a 

homologous-recombination based method for constructing recombinant HSV-1 expressing 

different proteins, including fluorescent reporter proteins, and Cre recombinase. The 

results in this chapter are divided into four sections, with the first describing the 

construction of different recombinant viruses using a traditional cotransfection method. 

The next section describes the development and optimisation of a transfection/infection 

based method for engineering HSV, with the addition of the CRISPR/Cas9 tool to further 

increase the efficiency of HSV genome engineering. Then the use of a second, largely 

uncharacterised, intergenic region between the UL26 and UL27 genes of HSV-1 for the 

expression of foreign DNA was described. Finally the growth and pathogenesis of these 

viruses was assessed by a variety of methods. 
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3.2 Generation of recombinant HSV-1 using a co-transfection 

method 

3.2.1 Verification of the UL3/UL4 intergenic region as a suitable site for 

insertion of foreign genes into HSV-1 KOS 

In order to generate recombinant HSV-1 that express Cre, a site in the genome where 

foreign sequence could be inserted without altering virus growth or pathogenesis was 

required. The UL3/UL4 intergenic region was chosen as it has been previously shown that 

insertions at this location do not alter virus growth or virulence of engineered HSV 

compared with wildtype viruses (Morimoto et al., 2009; Tanaka et al., 2004). To verify that 

this site could be used for insertion of foreign DNA into HSV-1 KOS, a transfer plasmid was 

constructed that contains approximately 2 kb of sequence from the UL3/UL4 region of 

HSV-1 KOS was constructed (pT UL3/4; refer to Section 2.1.9). These HSV-1 sequences 

were generated in two PCRs using primer extensions to add EcoRV, PstI and SpeI sites 

between the two native polyA sequences that are required for the proper termination of 

UL3, UL4 and UL5 transcription (Figure 3-1; Morimoto et al., 2009). A mCherry expression 

cassette was then inserted into the SpeI site to construct pT pCmC. This allows strong, 

constitutive expression of the mCherry fluorescent protein under the control of the CMV 

IE promoter, which enables the easy identification of the presence of recombinant virus by 

microscopy.  

Two independent, parallel cotransfections of viral HSV-1 and pT pCmC DNA were 

performed in Vero cells. After three days growth, mCherry+ plaques were able to be 

identified by fluorescence microscopy. Five plaques were selected directly from each well 

of transfected cells. All ten plaques were then subjected to up to five rounds of plaque 

purification. For the majority of these plaques (8 of 10), the frequency of mCherry+ 

plaques showed an overall decrease over multiple rounds of plaque purification and so 

they were abandoned (Figure 3-2). For the remaining two plaques the frequency of 

mCherry+ plaques sharply increased during the second round of plaque purification 

(lineages 1 and 2 on Figure 3-2). Following three rounds of plaque purification of these 

two lineages of virus all plaques were mCherry+ as determined by screening more than 

200 plaques by microscopy. A further round of plaque purification was required to 

eliminate parent virus as detected by PCR. Two independently isolated mCherry+ viruses 

were obtained (named HSV-1 pC_mC 1 and 2, respectively), confirming that I was able to 

insert a foreign gene into the UL3/UL4 region of HSV-1 by a homologous recombination 

based cotransfection method. 

Next, the in vitro growth of these two independently isolated viruses, named HSV-1  
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Figure 3-1. Location of the UL3/UL3 intergenic region for the insertion of foreign 

DNA into HSV-1. (A) Schematic representation of the HSV-1 genome with the location 

of UL3 and UL4 indicated (to scale). (B) Schematic representation of the UL3/UL4 

intergenic region, with the point at which the mCherry cassette is inserted indicated in 

green and the base pair position indicated using numbers from HSV-1 KOS (JQ673480). 

(C) Schematic representation of the mCherry expression cassette in the intergenic 

space between UL3 and UL4. 
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Figure 3-2. Results of plaque purification when using a cotransfection 

homologous recombination-based method for generating HSV-1 pC_mC. 

Linearised pT pCmC plasmid DNA and HSV-1 KOS genomic DNA was cotransfected into 

Vero cells. At 72 hours p.i., individual mCherry+ plaques were identified and the 

percentage mCherry+ plaques determined (round 0 of plaque purification). Five 

plaques from each of two independent parallel transfections were identified and plaque 

purification was attempted. The proportion of mCherry+ progeny for each round of 

plaque purification is shown, with approximately 200 plaques per lineage examined 

each round for red fluorescence by microscopy as appropriate. Two lineages out of ten 

were successfully plaque purified until free from wildtype virus as determined by PCR 

and sequencing.  
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pC_mC1 and HSV-1 pC_mC 2, was shown to be unaffected by the addition of mCherry into 

the UL3/UL4 intergenic region. These viruses showed no differences in growth relative to 

HSV-1 KOS in Vero cells following either high (Figure 3-3A) or low (Figure 3-3B) MOI 

infection.  

In order to verify that the pathogenesis and growth of the recombinant viruses generated 

in this thesis was similar, a variation on the flank zosteriform infection model of HSV-1 

was used (Blyth et al., 1984; Simmons and Nash, 1984; Van Lint et al., 2004). In this model, 

HSV-1 is introduced into the flank of the mouse by tattoo (Russell et al., 2015). Unlike 

scarification, the skin is left unbroken by the inoculation, and there is no sign of skin 

damage the day after infection, paralleling that of natural infection (Simmons and Nash, 

1984). The tattoo model also allows the development of a primary lesion to be clearly 

observed from two days p.i., and zosteriform spread is detectable from five days p.i. 

(Figure 3-4A1). The size of the lesion can also be estimated, as is shown in Figure 3-4A2. 

Unfortunately, there is some uncertainty involved in such measurement, due to the active 

nature of mice and the difficulty in measuring the curved skin surface of the flank using 

calipers. Further, as with other HSV-1 infection models, including scarification-based 

methods, tattoo infection does not result in a defined dose of virus being delivered. Many 

variables can influence the infection process, but by using a defined inoculum titre, 

controlling the length of time and pressure when tattooing, and randomising mice into 

experimental groups, the impact of these variables can be managed. Despite these 

limitations, the infection of mice on the flank by tattoo is a very useful animal model of 

HSV-1 infection. 

One virus was selected (HSV-1 pC_mC 2) and following infection of C57Bl/6 mice with 

either HSV-1 pC_mC 2 or wildtype HSV-1 KOS, skin lesion development was similar 

(Figure 3-4B). The growth of this virus in C57Bl/6 mice was also assessed relative to 

wildtype HSV-1 (Figure 3-4C). Virus growth was unimpaired in the skin. Although the 

difference in mean virus titre in the DRG of mice infected with HSV-1 KOS or HSV-1 pC_mC 

2 was statistically significant, it was less than two-fold, which is at the limit of the 

resolving power of our plaque assay. For this reason it was deemed likely to be 

biologically insignificant. This confirms previous observations that the UL3/UL4 intergenic 

region can be used as an insertion site without compromising HSV-1 replication or 

pathogenesis (Morimoto et al., 2009; Tanaka et al., 2004).  
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Figure 3-3. Insertion of mCherry into the UL3/UL4 intergenic region has no effect 

on virus growth in vitro relative to HSV-1 KOS. The replication of two independent 

lineages of HSV-1 pC_mC (blue) was compared to the parent wildtype HSV-1 KOS 

(black) in Vero cells in (A) single and (B) multiple step growth curves. (A) Confluent 

cell monolayers in 9.6 cm2 tissue culture wells were infected at a high MOI (5 PFU/cell 

in 1 mL M0). After one hour, the inoculum was removed, cells washed and 2 mL M2 was 

added. A 0 hour p.i. sample was collected immediately following the addition of fresh 

media. The remaining samples were harvested at 2, 4, 6, 12 or 24 hours p.i. (B) 

Confluent cell monolayers in 9.6 cm2 tissue culture wells were infected at a low MOI 

(0.01 PFU/cell in 1 mL M0). After one hour, the inoculum was removed, cells washed 

and 2 mL M2 was added. A 0 hour p.i. sample was collected immediately following the 

addition of fresh media. The remaining samples were harvested at 6, 24, 48 or 72 hours 

p.i. Virus titres were determined by standard plaque assay. Data are mean±SEM of 

three replicates.  
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Figure 3-4. Insertion of mCherry into the UL3/UL4 intergenic region has no effect 

on viral pathogenesis or growth in vivo relative to HSV-1 KOS. C57Bl/6 mice were 

infected by tattoo with 1×108 PFU/mL with WT HSV-1 KOS. (A1) Photographs of a 

representative mouse were taken at one, four, and seven days p.i. (A2) To estimate 

total lesion size over time, lesion size was measured daily using a caliper and clinical 

score was monitored daily, with mice never displaying any signs of illness other than 

the herpetic lesion on the flank. Data is mean lesion size±SEM (n = 3). (B) C57Bl/6 mice 

were infected by tattoo with 1×108 PFU/mL with HSV-1 KOS (black) or HSV-1 pC_mC 2 

(blue). Lesion size was measured daily and shown as mean lesion size±SEM (n = 5 for 

HSV-1 KOS, n = 4 for HSV-1 pC_mC 2). Data was analysed by a Kruskal-Wallis test (p > 

0.05). (C) Amounts of infectious virus in skin and innervating DRG of C57Bl/6 mice five 

days after flank infection with 1×108 PFU/mL HSV-1 KOS (black) and HSV-1 pC_mC 2 

(blue). Infectious virus was determined by standard plaque assay from ten DRG (spinal 

levels T5 to L1) or 1 cm2 skin located over the inoculation size. Circles show results for 

each mouse (n=4) and bars represent mean±SEM. The means were compared by an 

unpaired t test, where significance is denoted by * (p < 0.05) or as ns (not significant). 
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3.2.2 Cotransfection of plasmid and viral DNA to generate 

recombinant HSV-1 

The construction of another four viruses which express an eGFP/Cre recombinase fusion 

gene (Lee et al., 2001) under the control of different promoters from the UL3/UL4 

intergenic site was attempted using similar methods. Each HSV-1 promoter was chosen as 

it had been at least partially defined and was characterised as being from the immediate 

early, early or late temporal class of HSV gene expression. The US1/US12 promoter that 

dictates expression of ICP22 and ICP47, respectively, was chosen as the representative 

immediate early promoter (and named the ICP47 for the rest of this thesis for the sake of 

clarity). The promoter for the gene UL39 encoding ICP6 was chosen as the representative 

early promoter, while the promoter for the gene UL27 encoding gB was chosen as the 

representative late promoter. Finally, the CMV IE promoter was also used to direct 

expression of the gene encoding eGFP/Cre from HSV-1.  

3.2.2.1 Construction of recombinant HSV-1 expressing Cre under the control of the 

ICP47 promoter 

One of the two prototypic immediate early promoters chosen for use in this thesis was the 

ICP47 promoter. The US1 and US12 genes are located in the US region of the HSV-1 genome 

while the promoters are found in the TRS and IRS regions, respectively (see Figure 1-1; 

Murchie and McGeoch, 1982). As such, both genes are expressed from an identical 

promoter (Barklie Clements et al., 1977; Gelman and Silverstein, 1987; Murchie and 

McGeoch, 1982). As the efficiency of Cre-mediated recombination is linked to promoter 

strength, a high level of Cre expression was essential and so the sequence from  -400 to 

+100 (where +1 is defined as the nucleotide of the mRNA start site) was chosen for use as 

the ICP47 promoter (Araki et al., 1997; Gelman and Silverstein, 1987). Further, the 

eGFP/Cre protein used in all constructs is nuclear targeted to increase efficiency of Cre-

mediated recombination (Logvinoff and Epstein, 2000). An origin of replication (OriS) is 

also found within the ICP47 promoter sequence, but to avoid the insertion of a third copy 

of the OriS into HSV-1 it was omitted from the promoter sequence in this construct. The 

OriS sequence is not strictly required for the correct temporal class expression of US1 or 

US12, but in the absence of this sequence, expression from the ICP47 promoter was 

enhanced almost 2-3 fold as determined by luciferase expression in mouse embryonic 

fibroblasts, Vero cells and dissociated TG cultures. However, luciferase expression was 

similar in the presence or absence of the OriS sequence within the ICP47 promoter in the 

eye, periocular tissue or TG following infection by corneal scarification (Summers and 

Leib, 2002). Therefore, the ICP47 promoter and an eGFP/Cre cassette were inserted into 

pT UL3/4 to construct pT pICP47_eGC (refer to Section 2.2.6.2).  



128 

To construct HSV-1 pICP47_eGC, cotransfection of pT pICP47_eGC plasmid and HSV-1 KOS 

genomic DNA into Vero cells was carried out at a ratio of 2:1, 4:1, 8:1, 16:1 or 32:1. Instead 

of picking these plaques directly, all cells and media were harvested following three days 

incubation. This virus was diluted and used to infect new Vero cell monolayers. The 

rationale was that a further growth step may help eliminate unstable or otherwise 

defective virus. After two days of growth, eGFP+ plaques were identified and 29 individual 

plaques picked. Of these 29 plaques, only two plaques showed an overall increase in the 

number of eGFP+ plaques after two subsequent rounds of purification. After a total of four 

rounds of plaque purification, two eGFP+ viruses that originated from independent, 

parallel transfections were identified and found to be free from wildtype virus by 

fluorescence microscopy (Figure 3-5, lineages 1 and 2) and PCR (data not shown). The 

first lineage was selected, named HSV-1 pICP47_eGC, and the sequence of the eGFP/Cre 

cassette in the UL3/UL4 region was confirmed by PCR and sequencing and the virus 

phenotype was assessed both in vitro and in vivo (refer to Section 3.5). 

3.2.2.2 Construction of recombinant HSV-1 expressing Cre under the control of the gB 

promoter 

The promoter directing expression of the UL27 gene, encoding gB, was chosen as a 

representative γ1 promoter was chosen for use in this thesis (herein referred to as the gB 

promoter for simplicity). Transfection assays using promoter-chloramphenicol 

acetyltransferase (CAT) plasmids that contained various deletions in the gB promoter 

region have been used to identify a 86 base pair minimal promoter sequence (from -69 to 

+20 bp). However, UL27 has a long 5’-transcribed noncoding sequence of 268 nucleotides 

that was shown to enhance expression, but is not required for correct temporal expression 

(Pederson et al., 1992). Therefore, to a ensure maximal expression of Cre in ROSA26R 

mice, the 298 bp promoter sequence from -260 to +38 bp was amplified from HSV-1 KOS 

and cloned into pT UL3/4 to construct pT pgB_eGC (refer to Section 2.2.6.1).  

This virus was constructed in a similar manner to HSV-1 pICP47_eGC. An initial 

cotransfection of pT pgB_eGC plasmid and HSV-1 KOS genomic DNA was carried out at a 

ratio of 2:1, 4:1 or 7:1 in Vero cells. All cells and media were harvested following three 

days incubation. This harvested virus was then used to infect new Vero cell monolayers, 

enabling the identification of eGFP+ plaques. Initially, 21 plaques were selected and 

subjected to another round of plaque purification, but only four of these showed 

enrichment for eGFP+ virus. Two of eGFP+ plaques were selected for further plaque 

purification. Following another round of plaque purification (four rounds in total), two 

independently isolated eGFP+ virus were generated which was shown to be free from  
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Figure 3-5. Results of plaque purification when using a cotransfection 

homologous recombination-based method for construction of HSV-1 pICP47_eGC. 

Linearised pT pICP47_eGC plasmid DNA and HSV-1 KOS genomic DNA was 

cotransfected into Vero cells (plasmid:viral DNA ratio of 2:1, 4:1, 8:1, 16:1 or 32:1) . 

After three days, all virus was harvested into the original media. Virus was serially 

diluted and used to infect fresh cultures of Vero cells, and after two days, individual 

eGFP+ plaques were identified and counted. The percentage eGFP+ plaques was 

determined (round 1 of plaque purification). eGFP+ plaques from two independent 

parallel transfections were identified and plaque purification attempted, with the 

proportion of eGFP+ progeny for each round of plaque purification shown. 

Approximately 200 plaques per lineage were examined each round for green 

fluorescence by microscopy as appropriate. Two lineages out of 29 were successfully 

plaque purified to be free from wildtype virus as determined by PCR and sequencing.  

 

1 2 3 4 5

0

5

10

15

20

80

90

100

Unsuccessful lineages

Lineage 1

Lineage 2

Number of rounds
of plaque purification

%
 e

G
FP

+
 p

la
q

u
e

s

(o
f 

a
ll 

p
la

q
u

e
s)



130 

 

wildtype virus by microscopy and PCR screening (data not shown). One virus was 

selected, named HSV-1 pgB_eGC, and the correct insertion of the transgene into the 

UL3/UL4 intergenic region was confirmed by sequencing. The similarity in the phenotype 

of this virus to wildtype HSV-1 was confirmed both in vitro and in vivo (refer to Section 

3.5). 

3.2.2.3 Construction of recombinant HSV-1 expressing Cre under the control of the 

ICP6 promoter 

The large subunit of the ribonucleotide reductase enzyme, known ICP6 or ribonucleotide 

reductase 1, is encoded by the gene UL39, which is classed as an early gene, although it is 

uniquely regulated among the HSV-1 genes. Unlike other early genes, it is weakly 

responsive to VP16 transactivation due to the presence of a TAATGARAT-like motif. In 

some circumstances, ICP6 was found to be expressed at a low level in the presence of 

cycloheximide (Honess and Roizman, 1974; Sze and Herman, 1992). However, ICP0 is the 

major transactivator of ICP6 expression, and as such it is usually considered to be an early 

gene (Desai et al., 1993; Sze and Herman, 1992). High levels of UL39 transcripts 

accumulate during lytic infection in vitro, so the UL39 promoter (now referred to as the 

ICP6 promoter) was chosen as the early promoter for use in this thesis. A series of CAT 

plasmids containing different regions of sequence from the ICP6 promoter have been used 

in transfection assays to identify a region from -217 to +29 that contains the putative 

transcriptional consensus elements, including those responsible for promoter induction 

by VP16 and ICP0 (Desai et al., 1993). Therefore, this region was chosen as the ICP6 

promoter sequence and amplified from HSV-1 KOS. The ICP6 promoter and eGFP/cre 

fusion were cloned into pT UL3/4 to construct pT pICP6_eGC.  

To construct this virus, pT pICP6_eGC plasmid DNA and HSV-1 KOS viral DNA was 

cotransfected into Vero cells at a ratio of 2:1, 4:1, 8:1, 16:1 or 32:1. Following three days of 

incubation, all cells and media were harvested. This harvested virus was used to infect 

new Vero cell monolayers, enabling the identification of eGFP+ plaques. Eight eGFP+ 

plaques were selected with the aim of purifying the desired virus, but only one could be 

successfully plaque purified. Following several rounds of plaque purification, an eGFP+ 

virus was isolated and found to be free from wildtype virus by microscopy (Figure 3-6) 

and PCR screening (data not shown). This virus was named HSV-1 pICP6_eGC, and the 

correct insertion of the transgene into the UL3/UL4 intergenic region was confirmed by 

sequencing. The virus phenotype was also assessed relative to wildtype HSV-1 using both 

in vitro and in vivo models (refer to Section 3.5). 
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Figure 3-6. Results of plaque purification following a cotransfection homologous 

recombination- based method for construction of HSV-1 pICP6_eGC. Linearised pT 

pICP6_eGC plasmid DNA and HSV-1 KOS genomic DNA was cotransfected into Vero 

cells (plasmid:viral DNA ratio of 2:1, 4:1, 8:1, 16:1 or 32:1) . After three days, all virus 

and cells were harvested into the original media. The supernatant and cell associated 

virus was then separated by centrifugation. This cell-associated virus was serially 

diluted and used to infect fresh cultures of Vero cells. After two days growth, individual 

eGFP+ plaques were identified and counted. Eight plaques from two independent 

parallel transfections were identified and plaque purification attempted, with the 

proportion of eGFP+ progeny for each round of plaque purification shown. 

Approximately 200 plaques per lineage were examined each round for green 

fluorescence by microscopy as appropriate. Only one lineage able to be plaque purified 

to yield a stable recombinant virus free from wildtype virus as determined by 

microscopy and PCR screening. 
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3.2.2.4 Construction of recombinant HSV-1 expressing Cre under the control of the 

CMV IE promoter 

The CMV IE promoter is a strong and constitutively active promoter in mammalian cells 

that has been widely used to drive expression of foreign DNA from HSV-1 (Arthur et al., 

2001; Boshart et al., 1985; Ecob-Prince et al., 1995; Nelson et al., 1987). The CMV IE 

promoter is briefly active in cells infected with HSV-1, even if lytic gene expression does 

not occur prior to the establishment of latency (Arthur et al., 2001). Further, activity under 

the CMV IE promoter is also decoupled from the HSV-1 gene expression cascade and is not 

dependent on the HSV-1 transactivator VP16 (Preston and Nicholl, 1997; Stinski and 

Roehr, 1985). Therefore, the expression of eGFP/Cre under the control of this promoter in 

ROSA26R mice will result in β-gal expression in the majority of latently infected cells 

(Proença et al., 2008). 

Cotransfection of pT pC_eGC plasmid DNA and HSV-1 KOS genomic DNA was performed as 

previously described. Again, all virus and media were harvested following three days 

incubation. This harvested virus was then used to infect new Vero cell monolayers, and 

after two days growth eGFP+ plaques were identifiable. Of these, 25 plaques were initially 

selected and up to five rounds of plaque purification attempted, but none were able to be 

successfully purified to generate the recombinant virus. 

 

3.3 Transfection/infection methods for generating recombinant 

HSV-1 

Having failed to purify a virus expressing eGFP/Cre from the CMV IE promoter using a 

cotransfection-based method, a means of improving either the frequency of recombinant 

virus generated or stability of virus generated was sought. An alternative method for 

generating recombinant HSV-1 involves transfecting plasmid DNA into HSV-infected cells, 

although few details have been published (Foster et al., 1999; Orr et al., 2005). 

Importantly, the transfection/infection method is not reliant on the isolation of high 

quality HSV genomic DNA. It has been anecdotally suggested that the quality of genomic 

DNA used during transfection influences the generation of stable recombinant virus. 

Unfortunately, in practice the isolation of such high quality DNA can be difficult to achieve. 

Therefore, a transfection/infection based method was explored as a means of generating 

the viruses required. 

Highly transfectable 293A cells were transfected with linearised pT pC_eGC DNA, five 

hours prior to infection with HSV-1 KOS. The transfection efficiency was approximately 
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80% as determined by flow cytometry (data not shown). After three days, all cells and 

media were harvested. This virus was used to infect new Vero cells monolayers and after 

two days of growth, the proportion of eGFP+ plaques of all plaques was determined. These 

eGFP+ plaques were identified at an average frequency of 0.4%. This is lower than that 

previously observed for other cotransfections (such as described in Figure 3-6) but is 

within a similar range to that previously published using a cotransfection method (Kolb 

and Brandt, 2004; Krisky et al., 1997). Despite the slight reduction in the efficiency of the 

generation of recombinant virus initially, all four of the original plaques selected were able 

to be plaque purified to yield clean stocks of eGFP+ virus determined by microscopy 

(Figure 3-7) and PCR (data not shown). Therefore, the lower initial yield of eGFP+ plaques 

was offset by the higher fraction of eGFP+ plaques that gave rise to pure stocks of virus. 

One of these virus stocks was selected, named HSV-1 pC_eGC, and was sequenced to 

confirm the insertion of the eGFP/Cre cassette into the UL3/UL4 intergenic region. The 

virus phenotype was assessed both in vitro and in vivo relative to wildtype HSV-1 (refer to 

Section 3.5). 

3.3.1 Optimisation of variables associated with the 

transfection/infection method of generating recombinant virus 

It was believed that further optimisation would be worthwhile to improve the 

infection/transfection method for the construction of recombinant HSV. Three parameters 

associated with the infection/transfection methods were tested to establish those that 

were important for the generation of recombinant virus, namely: 

1. The MOI, 

2. Transfection efficiency, and  

3. The length of flanking region sequence. 

To determine if the amount of virus used to infect cells influenced the frequency of 

recombination, 293A cells were transfected with linearised pT pC_eGC DNA. Five hours 

later, these cells were infected with HSV-1 KOS at an MOI of 0.01, 0.001 or 0.0001. All virus 

and media were harvested after three days. Serial dilutions of this virus were used to 

infect new cultures of Vero cells, allowing quantification of eGFP+ and eGFP- progeny. 

Unsurprisingly, as MOI increased, the total virus yield improved (Figure 3-8). However, 

the proportion of eGFP+ to eGFP- plaques remained similar, and so to augment virus yield 

from transfections a MOI of 0.01 was chosen for subsequent experiments. 

To examine the effect of transfection efficiency on the generation of recombinant virus, 

varied amounts of linearised or circular plasmids were transfected into 293A cells to 

achieve differing transfection efficiencies, measured by flow cytometry (Figure 3-9A&B). 
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Figure 3-7. Successful plaque purification of all plaques when using a 

transfection/infection homologous recombination-based method for the 

construction of HSV-1 pC_eGC. 293A cells were transfected with linearised pT pC_eGC 

plasmid DNA and 5 hours later were infected with HSV-1 KOS. After three days, all 

virus was harvested into the original media. Virus was serially diluted and used to 

infect fresh cultures of Vero cells, allowing individual eGFP+ plaques to be identified 

after 48 hours growth. The percentage eGFP+ plaques was determined (round 1 of 

plaque purification) by screening approximately 200 plaques per lineage for green 

fluorescence by microscopy as appropriate. Four plaques from two independent 

parallel transfections were identified and plaque purification attempted, with the 

proportion of eGFP+ progeny for each round of plaque purification shown, all of which 

were purified and shown to be free from wildtype virus by microscopy and PCR. 
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Figure 3-8. Effect of MOI on the virus output following transfection/infection to 

generate recombinant HSV-1. Confluent 293A cells were transfected with linearised 

pT pC_eGC DNA and 5 hours later were infected with HSV-1 at the MOIs shown. All 

virus and cells were harvested at 72 hours p.i. This virus was serially diluted and used 

to infect monolayers of Vero cells. After two days growth, the total number of plaques 

(open) and eGFP+ plaques (blue) was determined. Data are representative of two 

independent experiments. 
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Figure 3-9. Effect of transfection efficiency on the virus output following 

transfection/infection to generate recombinant HSV-1. 293A cells were transfected 

with (A) intact or (B) linearised pT pC_eGC DNA such that a range of transfection 

efficiencies were achieved as determined by flow cytometry to detect eGFP expression. 

The number in each plot represents the percentage of eGFP+ events of the gated 

population relative to the population shown in the plot. Five hours later, cells were 

infected with HSV-1 a MOI of 0.01. All virus and cells were harvested at 72 hours p.i. 

and serially diluted and used to infect monolayers of Vero cells. This allowed the 

proportion of eGFP+ plaques to be determined after two days growth. (C) Transfection 

efficiency versus the proportion of eGFP+ plaques following transfection/infection 

using (C) intact or (D) linearised DNA. Linear regressions were performed and R2 

values are shown on each graph. 
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After five hours, cells were infected with HSV-1 KOS at a MOI of 0.01. All virus and media 

was harvested after three days, and serial dilutions of this virus were used to infect new 

cultures. The proportion of plaques that were eGFP+ could then be determined. 

Recombinant progeny were not reliably produced if the frequency of recombination was 

less than approximately 20% (Figure 3-9D). Higher transfection efficiencies improved the 

proportion of eGFP+ plaques in a roughly linear manner (Figure 3-9). However, this is 

unlikely to be relevant in practice, as even with the highest transfection efficiency, 

hundreds of plaques will need to be screened to identify a single plaque containing the 

desired recombinant virus. 

The final parameter tested was the length of the viral sequences flanking the insertion site 

used in the transfer plasmid. It has been suggested that the region of sequence 

homologous to the HSV genome that flanks the insertion site must be at least 0.5 to 1 kb to 

allow for efficient recombination (Coffin, 2010; Goins et al., 2008). However, the impact 

the length of this flanking sequence has on the frequency of recombination does not 

appear to have been systematically examined. Plasmids were generated that contained 

approximately 0.5, 1, 2 or 3 kb of sequence on either site of the UL3/UL4 intergenic region 

(Figure 3-10A). The yellow fluorescent protein Venus was chosen as a marker so that 

fluorescence could be used to identify any recombinant plaques while widening the range 

of foreign genes in our repertoire that can be inserted using the transfection/infection 

method (Hernandez and Sandri-Goldin, 2010; Morimoto et al., 2009; Nagai et al., 2002). 

The transfer plasmids were transfected into 293A cells such that the transfection 

efficiency was similar for all plasmids as determined by flow cytometry for the detection 

of Venus expression (Figure 3-10B). After five hours, the cells were infected with HSV-1 

KOS at a MOI of 0.01. All virus and media was harvested after three days, and serial 

dilutions of this virus were used to infect new monolayers of Vero cells. After two days of 

growth, the proportion of Venus+ plaques of total virus was determined by fluorescence 

microscopy (Figure 3-10C). In two independent experiments, the frequency of Venus+ 

plaques was directly proportional to the length of the flanking sequence in the transfer 

plasmids, with the range of efficiency being in the order of 10-fold. Three plaques were 

selected from a transfection with each of the four transfer plasmids and subjected to a 

single round of plaque purification. In all cases enrichment of Venus+ virus relative to 

wildtype virus was observed (data not shown). Two of these plaques were selected and 

subjected to additional rounds of plaque purification (Figure 3-10D), leading to the 

production of pure stocks of recombinant virus as determined by microscopy and PCR 

(data not shown). 
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Figure 3-10. Influence of flank sequence length on recombinant HSV generation 

by transfection/infection. (A) Representative map of plasmids with different lengths 

of UL3/UL4 flanking sequences. Four different lengths were used as depicted by the 

concentric purple boxes to generate plasmids pU3.0.5kbF-Venus (HSV-1 KOS 11200-

12179), pU3.1kbF-Venus (HSV-1 KOS 10700-12722), pU3.2kbF-Venus (HSV-1 KOS 

9803-13698) and pU3.3kbF-Venus (HSV-1 KOS 8689-14663). Other features are as 

marked. (B) 293A monolayers were transfected with the each of the plasmids shown in 

(A) such that the transfection efficiency was similar for all plasmids as determined by 

flow cytometry (B). The number in each plot represents the percentage of Venus+ 

events of the gated population relative to the population shown in the plot. The cells 

were infected at an MOI of 0.01 5 hours later. All virus and media were harvested at 72 

hours p.i. and used to infect monolayers of fresh Vero cells. (C) The percentage of 

Venus+ plaques of all HSV plaques is shown (round 1 of plaque purification). Two 

independent experiments are indicated with markers in blue and black. Linear 

regressions were performed and R2 values are shown on each graph. (D) Two Venus+ 

plaques were selected and plaque purified until they were free from wildtype virus as 

determined by microscopy and PCR screening. 
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3.3.2 CRISPR/Cas9 targeting of the site of recombination for 

improving transfection/infection methods 

In all the experiments described so far, the frequency of the generation of recombinant 

virus by transfection/infection was high enough to allow the visual selection of viruses 

that express a fluorescent marker. However, even with the optimisation of this method 

described in Section 3.3.1, it would be challenging to identify recombinant virus without 

the aid of visual selection. Recently, CRISPR/Cas9 genome engineering approaches have 

been used to improve the efficiency of homologous recombination (Mali et al., 2013), and 

we believed that it may greatly increase the efficiency of HSV-1 genome engineering. 

Therefore, we decided to focus on developing this method for the construction of the 

recombinant HSV-1 required for this thesis (Russell et al., 2015). During the course of this 

thesis, two reports have also been published that reinforce how promising the 

CRISPR/Cas9 approach is for engineering the HSV-1 genome (Bi et al., 2014; Suenaga et al., 

2014). 

3.3.2.1 Generation of HSV-1 pICP0_eGC using CRISPR/Cas9 in combination with a 

transfection/infection based method 

A recombinant virus was designed to determine whether a CRISPR/Cas9 based system 

could be used to generate recombinant HSV-1. This virus was designed to express 

eGFP/Cre using the ICP0 promoter from the UL3/UL4 intergenic space, and was modelled 

on that used by Proença and colleagues (2008). 293A cells were transfected with 

linearised pT pICP0_eGC DNA and either pX330 or pX330-mC. The plasmid pX330-mC 

encodes a gRNA that targets mCherry for cleavage along with the CRISPR machinery. The 

U6 promoter initiates transcription of the gRNA with guanine and requires the 

protospacer-adjcaent motif (PAM)-NGG followed by the 20 bp target sequence. The 

control pX330 plasmid contains only the Cas9 nuclease and the gRNA but lacks the 20 bp 

target sequence and so is unable to cleave mCherry. Five hours after transfection, the cells 

were infected with HSV-1 pCmC. After three days growth, all virus and media were 

harvested. Serial dilutions of this virus were replated on Vero cells, and the proportion of 

eGFP+, mCherry+ and non-fluorescent plaques was determined (round 1 of plaque 

purification). The frequency of eGFP+ plaques when the conventional 

transfection/infection method was used (ie. when the control pX330 plasmid was used) 

was comparable to that of previous experiments, with a frequency of recombination of 

0.03% (Figure 3-11A). By contrast, when the mCherry targeted Cas9 was used to cleave 

the viral genome, the frequency of recombination was substantially higher (~6%). This is 

comparable with the frequency of generation of recombinant virus subsequently reported 

by Bi and colleagues (2014), and Suenaga and colleagues (2014). So, targeting the genome  
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Figure 3-11. Generation of HSV-1 pICP0_eGC by transfection/infection method 

with the use of CRISPR/Cas9 to target the site of insertion. (A) 293A cell 

monolayers were cotransfected with 2 µg of the repair plasmid pT pICP0_eGC and 

either pX330 or pX330-mC. After five hours, cells were infected with HSV-1 pCmC at an 

MOI of 0.01. All virus and media was harvested after three days and used to infect 

monolayers of Vero cells (round 1 of plaque purification). The percentage of eGFP+ 

(green), mCherry+ (red) and non-fluorescent (clear) plaques where mCherry was 

targeted (with pX330-mC) or not (with pX330) is shown, with up to 200 plaques 

screened by microscopy for the detection of fluorescence. Two parallel independent 

transfections were performed and the results shown as mean-SEM. (B) Two plaques 

from two independent parallel transfections were identified and plaque purified until 

found to be free from wildtype virus as shown by microscopy and PCR.  
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for cleavage using the CRISPR/Cas9 system resulted in an almost 200-fold increase in 

frequency of the desired recombinant virus. Approximately a third of the viral progeny 

generated did not exhibit detectable fluorescence, indicating the viral genome had likely 

been cleaved but not repaired with the provided repair plasmid.  

Two eGFP+ plaques were identified by microscopy and subjected to a further round of 

plaque purification, after which time a plaque that was free from wildtype virus was 

identified (Figure 3-11B). While single-round isolation of recombinant HSV has been 

reported (Bi et al., 2014), this relied upon selecting a plaque containing recombinant virus 

only as determined by PCR, which was not used in this case. Following another round of 

plaque purification to verify the absence of detectable wildtype virus by microscopy 

(Figure 3-11B) and PCR (data not shown), two independent viruses were isolated, and 

one, named HSV-1 pICP0_eGC, was selected for future study. This virus was sequenced to 

verify the insertion of the eGFP/Cre cassette into the UL3/UL4 intergenic region. Although 

four single base pair mutations were identified, only two (D61N and R183G) lead to amino 

acid substitutions, both within the non-essential UL3 ORF (Baines and Roizman, 1991). 

The mutations would not be expected to impact upon the nuclear localisation or nuclear 

export sequences of UL3, but as there is no identifiable function for the protein encoded by 

UL3 it is difficult to hypothesise if there would have an identifiable phenotype in vivo 

(Markovitz, 2007; Zheng et al., 2011). Nonetheless, subsequent characterisation of this 

virus revealed no differences in growth or pathogenesis relative to wildtype virus (refer to 

Section 3.5).  

Given the high frequency with which recombinant virus was detected and the reduced 

number of rounds of plaque purification required to isolate this recombinant virus, it was 

confirmed that it would be feasible to use this method to generate a recombinant virus 

using PCR screening alone. 

3.3.2.2 Generation of non-fluorescent HSV-1 using the CRISPR/Cas9 based method 

A virus was required for use in this thesis that expresses the eGFP/Cre gene under the 

control of the LAT promoter. However, the LAT region is transcriptionally complex, with 

multiple promoters identified, each with different elements that dictate both short and 

long-term expression of the LATs (Figure 3-12A&B; Berthomme et al., 2000; Chen et al., 

1995; Dobson et al., 1995; Dobson et al., 1989; Goins et al., 1994; Lokensgard et al., 1997). 

Further, expression of reporter genes from putative LAT promoters inserted into an 

ectopic locus in the genome has not always continued long term throughout latency 

(Dobson et al., 1995; Goins et al., 1994; Margolis et al., 1993). Alternatively, β-gal has been 

the control of the LAT promoter by an IRES, resulting in long-term expression of β-gal  
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Figure 3-12. The LAT region of HSV-1. (A) Schematic representation of the HSV-1 

genome with the location of LAT region indicated (to scale), with the point at which the 

gene expression cassettes are inserted indicated in green and the base pair position 

indicated using numbers from HSV-1 KOS (JQ673480). For simplicity, only the LAT 

region within the IRL at the left hand side of the prototypic genome is shown. The 

relevant ORFs are indicated, including the genes RL2, which encodes ICP0, UL15, which 

encodes ICP34.5, and RS1, which encodes ICP4. (B) Schematic representation of the 

LAT region, with the transcription pattern of the LATs indicated. The 8.3kb major LAT, 

2 kb minor LAT and 1.5kb LAT are indicated in yellow, and the Latency Associated 

Promoter (LAPs) are indicated in blue. (C) Schematic representation of the LAT region 

of HSV-1 LAT pCmC, showing the CMV IE/mCherry cassette. (D) Schematic 

representation of the LAT region of HSV-1 pLAT_eGC, showing the IRES/eGFP Cre 

cassette. 
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inserted approximately 1.5 kb downstream of the LAT transcription site and placed under 

during latency (Lachmann and Efstathiou, 1997; Lachmann et al., 1996). For these 

reasons, a CRISPR/Cas9 based approach was used to generate a recombinant virus in 

which the eGFP/Cre is placed under the control of an IRES inserted into the LAT region 

(Lachmann and Efstathiou, 1997). Insertions at this location do not affect LAT promoter-

mediated transcription when a gene under the control of the ECMV IRES was inserted 

approximately 1.5 kb downstream from the LAT transcription start site.  

As the LAT promoter is not typically highly expressed in vitro, this virus cannot be selected 

for and plaque purified based on reporter gene expression in Vero cells (Batchelor and 

O'Hare, 1990; Zwaagstra et al., 1990). To overcome this, I chose to use the strategy 

employed by Lachmann and Efstathiou (1997). They constructed a virus whereby β-gal 

was expressed from the constitutive CMV IE promoter from the desired location in the 

LAT region of the genome. They then replaced the CMV IE promoter with an IRES that 

directs expression of β-gal from the LAT promoter, enabling the selection of plaques that 

are no longer β-gal+. Therefore, I decided to construct a recombinant virus whereby 

mCherry was expressed under the CMV IE promoter, and so would appear red by 

fluorescence microscopy. A construct was then introduced such that the mCherry 

transgene was replaced with an eGFP/Cre fusion gene under the control of an IRES, 

allowing for the screening and purification of this non-fluorescent virus in Vero cells. 

A construct was designed that contains 1.2 kb of sequence that is homologous to the LAT 

region of HSV-1. Into this region, the fluorescent protein mCherry was inserted under the 

control of the CMV IE promoter (Figure 3-12C). This plasmid was transfected into cells, 

followed by infection with HSV-1 KOS. After three days, the virus and media was harvested 

and serially dilutions of virus were used to infect fresh cultures of Vero cells. This allowed 

for the identification of mCherry+ plaques. Several rounds of plaque purification were then 

carried out until a mCherry+ virus could be identified that was free from wildtype virus as 

determined by PCR. This virus was named HSV-1 LAT pCmC. To verify that the mCherry 

cassette was inserted into the correct location of the genome, genomic HSV-1 LAT pCmC 

DNA was isolated and digested with PsiI or XhoI before agarose gel electrophoresis. This 

revealed that the mCherry cassette was located at both ends of the IRL at the desired 

location and it is unlikely that there have been any gross morphological changes to the 

viral genome (Figure 3-13A&B). 

To generate HSV-1 pLAT_eGC, a plasmid, named pUC57 pLAT_eGC, was designed that 

contained 1.2 kb of sequence homologous to the LAT region of HSV-1, and an eGFP/Cre 

fusion gene under the control of an IRES was inserted into the middle of this region. This  
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Figure 3-13. Characterisation of HSV-1 with a mCherry expression cassette 

inserted into the LAT region of HSV-1 KOS by whole genome restriction enzyme 

digest. The addition of the mCherry cassette into both ends of the genome results in an 

extra 2948 bp of sequence total. (A) DNA of HSV-1 KOS and HSV-1 pLAT pCmC was 

digested with PsiI overnight and analysed by agarose gel electrophoresis. This leads to 

the cleavage of the 33.4 kb and 7.6 kb (the approximate size is indicated by the purple 

arrow) PsiI fragments of wildtype HSV-1 KOS into 2.9 kb (the approximate size is 

indicated by the red arrow) and 31.9 kb, and 6.1 (the approximate size is indicated by 

the yellow arrow) and 3.0 kb (the approximate size is indicated by the red arrow) 

fragments respectively. (B) DNA of HSV-1 KOS and HSV-1 LAT pCmC was digested with 

XhoI overnight and analysed by gel electrophoresis. This leads to the cleavage of the 6.1 

kb (the approximate size is indicated by the orange arrow) and 14.3 kb (the 

approximate size is indicated by the blue arrow) XhoI fragments of wildtype HSV-1 KOS 

into 3.5 kb and 4.0 kb, and 12.2 kb and 3.5 kb fragments respectively. The sizes of 

relevant fragments of the 1 kb DNA extension ladder are indicated using green arrows.  
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Figure 3-14. Characterisation of HSV-1 with an eGFP expression cassette inserted 

into the LAT region of HSV-1 KOS by whole genome restriction enzyme digest. The 

addition of the mCherry cassette into both ends of the genome results in an extra 2513 

bp of sequence total. DNA of HSV-1 KOS and HSV-1 pLAT pCmC was digested with 

EcoRV or PsiI overnight and analysed by agarose gel electrophoresis. This leads to the 

cleavage of the 33.4 kb and 7.7 kb EcoRV fragments of wildtype HSV-1 KOS into 3.6 kb 

(the approximate size is indicated by the blue arrow) and 32.4 kb, and 6.6 kb and 3.6 kb 

(the approximate size is indicated by the blue arrow) fragments respectively. This leads 

to the cleavage of the 33.4 kb and 7.6 kb (the approximate size is indicated by the 

purple arrow) PsiI fragments of wildtype HSV-1 KOS into 0.5 kb, 3.5 kb (indicated by 

the red arrow) and 31.9 kb fragments, and 0.5 kb, 6.1 kb (the approximate size is 

indicated by the yellow arrow) and 3.4 kb (the approximate size is indicated by the red 

arrow) fragments respectively. The sizes of relevant fragments of the 1 kb DNA 

extension ladder are indicated using green arrows.  
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plasmid was cotransfected with either pX330 or pX330-mC into 293A cells, followed by 

infection with HSV-1 LAT pCmC after five hours. After three days, the virus and cells were 

harvested and this virus was serially diluted and used to infect fresh cultures of Vero cells. 

Fluorescence negative plaques could be identified after two days growth. PCR screening 

was then used to identify plaques that were positive for the eGFP/Cre fusion gene (data 

not shown). Once the desired recombinant virus was identified, three rounds of plaque 

purification were carried out to isolate pure recombinant virus that did not express 

mCherry and so was free from the parent HSV-1 LAT pCmC virus. Sequencing of this 

region was not performed due to the difficulties associated with the high average ‘GC’ 

content of 66%, up to 97.5% in some areas, and complex secondary structure of the LAT 

region of the genome. To verify that the eGFP/Cre cassette was inserted the correct 

location, genomic DNA was isolated and digested with PsiI or EcoRV before agarose gel 

electrophoresis. As far as the resolution of this gel allows, this confirmed that the cassette 

was located in the LAT region at both ends of the IRL, and that there had not been any 

gross morphological changes to the viral genome (Figure 3-14). 

3.3.2.3 Investigation of variables that influence the frequency of generation of 

recombinant virus when using the CRISPR/Cas9 based method 

To improve the efficiency of the construction of recombinant HSV-1 by CRISPR/Cas9 

technology, the impact of two parameters associated with the CRISPR/Cas9 method of 

generating recombinant virus were considered: 

1. The length of flanking region sequence, as increasing the length of the 

sequence homologous to the site of insertion in the genome was resulted in an 

increase in the frequency of the generation of recombinant virus when using 

the conventional infection/transfection method (refer to Section 3.3.1).  

2. The DNA ratio of CRISPR/Cas9 targeting plasmid to repair plasmid. It was 

previously shown that following cleavage of the HSV-1 pC_mC genome by Cas9 

with a gRNA designed to cleave mCherry, almost of a third of viral progeny did 

not exhibit detectable fluorescence. It is likely that the viral genome had been 

cleaved by Cas9, but was not repaired with the plasmid DNA template 

provided (refer to Section 3.3.2.1). The failure to correctly repair the viral 

genome may have been due to a limited amount of repair template provided, 

particularly as each cell is likely infected with more than one copy of the viral 

genome. Therefore, increasing the amount of repair template may result in an 

increase in the frequency of the desired recombinant virus. 

The Venus transfer plasmids with different sizes of flanking sequence (Figure 3-11A)  
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were transfected into 293A cells such that the transfection efficiency was similar (as 

determined by flow cytometry, data not shown) with either pX330 or pX330-mC in a 1:1 

ratio. The cells were then infected with HSV-1 pCmC at a MOI of 0.01. After three days 

growth, the virus and media were harvested and then used to infect new Vero cells. The 

proportion of Venus+, mCherry+ and fluorescence negative plaques could then be 

determined by microscopy after another two days growth. Regardless of the repair 

plasmid used, the use of mCherry-targeting pX330-mC had a dramatic effect, improving 

the frequency of Venus+ plaques by more than 100-fold compared to the control pX330 

plasmid. Therefore, increasing the length of sequence flanking the Venus insert from 1 to 

5.6 kb made only a marginal difference in the generation of recombinant virus (Figure 3-

15A). The use of the transfer plasmid with a total flanking sequence of 5.6 kb appeared to 

facilitate a slightly higher frequency of recombination but this was not observed in a 

second independent experiment.  

To examine the impact of altering the ratio of the repair plasmid DNA to pX330-mC, 293A 

cells were transfected with 2 µg of the repair plasmid pU3.1kbF-Venus and either pX330 

or pX330-mC in a molar ratio of 4:1, 2:1, 1:1 or 1:2. The cells were then infected with HSV-

1 pCmC at an MOI of 0.01. All virus was harvested after three days and fresh monolayers of 

Vero cells were infected with serial dilutions of the progeny of these 

transfection/infections. After two days of growth the proportion of Venus+, mCherry+ and 

fluorescence negative plaques was determined. Altering the ratio of the CRISPR/Cas9 

plasmid to the repair plasmid had only a modest impact on the proportion of Venus+ virus 

generated. Further, there was almost no impact on the proportion of non-fluorescent 

plaques observed (Figure 3-15B). As such, altering the proportion of CRISPR/Cas9 plasmid 

to repair plasmid is likely to be of little consequence for the optimisation of this method of 

generating recombinant HSV. 

 

3.4 Identification of a second intergenic region for the expression 

of foreign genes 

A variety of different locations have been identified in the HSV-1 genome that may be 

appropriate for the insertion of foreign DNA. A suitable site is flanked by genes that are 

convergently transcribed (Morimoto et al., 2009). Additionally, there should be enough 

sequence between the two polyA sites of these genes to allow an insertion to be made 

without disrupting either transcription unit. This includes locations such as the UL50/UL51 

or US1/US2 intergenic regions, and the extensively characterised UL3/UL4 intergenic  
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<0.05% 0.08% 0.1% 

Figure 3-15. Targeting the site of insertion using CRISPR-Cas9 has an overriding 

effect on recombination frequency. (A) 293A cell monolayers were cotransfected 

with 2 µg of one of the plasmids shown in Fig. 3-11A and either pX330 or pX330-mC in 

a 1:1 ratio, and infected with HSV-1 pCmC at an MOI of 0.01 5 hours later. All virus and 

media was harvested after three days and used to infect monolayers of Vero cells. Pie 

charts show the percentage of Venus+, mCherry+ and non-fluorescent plaques where 

mCherry was targeted (with pX330-mC) and boxes below are the approximate percent 

of Venus+ plaques found when the control (pX330) plasmid was used. (B) 293A 

monolayers were cotransfected with 2 µg pU3.1kbF-Venus and the appropriate mass of 

either pX330 or pX330-mC so the ratio of these plasmids was 4:1, 2:1, 1:1 or 1:2, and 

infected with HSV-1 pCmC at an MOI of 0.01 5 hours later. All virus and media was 

harvested after three days and used to infect monolayers of Vero cells. The pie charts 

and boxes show data as for panel A, and nd = not determined. These experiments were 

repeated with similar results (data not shown). 
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region (refer to Section 3.2.1; Morimoto et al., 2009; Tanaka et al., 2004). Most other 

common sites of insertion, such as the US5/US6 region and tk locus, invariably lead to some 

loss of viral sequence or disruption of some ORFs (Mocarski and Roizman, 1982; Proença 

et al., 2008; Rinaldi et al., 1999). These sites are then less desirable locations for insertion 

into the HSV genome when wildtype virulence is desired. 

The space between UL26 and UL27 genes has the ideal structure for the insertion of foreign 

genes, and has had a limited history of genetic manipulation (Balliet et al., 2007; Bzik et al., 

1984; Cai et al., 1993; Holland et al., 1984; Morimoto et al., 2009; Potel et al., 2002). The 

UL27 region has been engineered to introduce mutations into gB for structural and 

functional analyses (Desai et al., 1994). Foreign DNA has also been inserted into the 

UL26/UL27 site previously, but in some cases the resultant viruses showed reduced 

virulence in mice relative to wildtype virus (Balliet et al., 2007; Cai et al., 1993; Orr et al., 

2005). For one virus, the insertion disrupted the native polyA signal of UL26, so this was 

replaced with the SV40 polyA (Orr et al., 2005). It was not clear why the phenotype of this 

virus was altered. Given the previous use of the UL26/UL27 intergenic region as a site of 

insertion, this region was chosen for use as a second site of insertion, with care taken to 

leave the two transcription units intact (Figure 3-16). 

3.4.1 Design and construction of the transfer plasmid pU26/7 for 

insertion of DNA into the UL26/27 intergenic site 

The location of the shared UL24 and UL26 putative polyA signal and the UL27 polyA signal 

was identified based on an analyses of polyA sites of HSV-1 by McGregor and colleagues 

(1996). Approximately 2 kb of the UL26/UL27 region was amplified and cloned into the 

pUC vector with the insertion of an MCS between these putative polyA sites. This meant 

that an ICP47 promoter (as described in Section 3.2.2.1) Tdtomato expression cassette 

could be inserted into a position midway between the UL26 and UL27 polyA sites to 

generate pU26/7 pICP47_Tdtom (Figure 3-16). 

3.4.2 Generation of HSV-1 expressing Tdtomato from the UL26/UL27 

intergenic region 

To determine if the UL26/UL27 region would be suitable for the expression of foreign 

genes from HSV-1, a virus was constructed that expressed the fluorescent reporter 

Tdtomato from this site under the control of the ICP47 promoter. Linearised pU26/7 

pICP47/Tdtom plasmid DNA was transfected into 293A cells followed by infection with 

HSV-1 KOS for two hours. After 72 hours, all cells and media were harvested, and used to 

infect new Vero cell monolayers. After 2 days of growth, the proportion of Tdtomato+  
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Figure 3-16. Identification of the UL26/UL27 intergenic region for the insertion of 

foreign DNA into HSV-1. (A) Schematic representation of the HSV-1 genome with the 

location of UL26 and UL27 indicated (to scale). (B) Schematic representation of the 

UL26/UL27 intergenic region, with the point at which the Tdtomato cassette is inserted 

indicated in green and the base pair position indicated using numbers from HSV-1 KOS 

(JQ673480).(C) Schematic representation of the Tdtomato expression cassette in the 

intergenic space between UL26 and UL27. 
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plaques was determined. A Tdtomato+ plaque was selected from each of two independent, 

parallel transfections and plaque purified to yield pure recombinant virus (Figure 3-17), 

which was free from wildtype virus as determined by microscopy and PCR. One of these 

viruses was chosen for further examination and named HSV-1 pICP47/Tdtom. 

Secondary structure within the ICP47 promoter meant that amplifying the entire 

Tdtomato cassette by PCR was very difficult, so a restriction digest of the viral genome 

was performed to demonstrate that the Tdtomato had been inserted as expected into the 

UL26/UL27 intergenic region (Figure 3-18). Unfortunately, there was not sufficient 

resolution to allow confirmation that gross morphological changes to the viral genome had 

not occurred. To further characterise HSV-1 pICP47/Tdtom, its replication ability was 

assessed relative to HSV-1 KOS by a multiple step growth curve (MOI 0.01) in Vero cells. 

Both viruses grew with similar kinetics in vitro (Figure 3-19). Both viruses replicated to 

similar titres to HSV-1 KOS in vivo (refer to Section 3.5.3). Overall, this data suggests that 

this UL26/UL27 site can be used to construct recombinant HSV-1 without the disruption of 

genes, growth defects or any attenuation in vivo. 

 

3.5 Characterisation of recombinant HSV-1 designed to express 

eGFP/Cre from the UL3/UL4 intergenic region 

In this thesis, a number of viruses were designed and constructed that express eGFP/Cre 

under the control of various promoters. It is important that these viruses are similar to 

wildtype HSV-1 KOS when used both in vitro and in vivo.  

3.5.1 Assessment of replicative ability of recombinant viruses in vitro 

To verify that these viruses exhibit similar growth to wildtype HSV-1 in vitro, multiple step 

growth curves (MOI 0.01) were performed in Vero cells. The growth of the parental virus 

KOS was assessed relative to one of the recombinant viruses generated. HSV-1 

pICP47_eGC, HSV-1 pICP6_eGC, HSV-1 pICP0_eGC, HSV-1 pgB_eGC or HSV-1 pC_eGC did 

not exhibit any change in kinetics compared to wildtype virus in vitro, suggesting that the 

replication ability of these viruses was similar to HSV-1 KOS (Figure 3-20). 

In order to assess the replication ability of HSV-1 pLAT_eGC, first the growth of the parent 

virus HSV-1 LAT pCmC was assessed in Vero cells by a multiple step growth curve (MOI 

0.01). This demonstrated that the wildtype HSV-1 KOS and HSV-1 LAT pCmC grew with 

similar kinetics (Figure 3-21A). Once the recombinant virus HSV-1 pLAT_eGC was 

constructed, the growth of HSV-1 pLAT_eGC was assessed in comparison to HSV-1 LAT  
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Figure 3-17. Generation of recombinant HSV-1 containing a Tdtomato expression 

cassette inserted into the UL26/UL27 intergenic region. 293A cell monolayers were 

transfected with pU26/7 pICP47_Tdtom and after 5 hours were infected with HSV-1 

KOS at an MOI of 0.01. After 72 hours, all virus and media was harvested and used to 

infect monolayers of Vero cells (round 1 of plaque purification). After two days growth, 

the frequency of Tdtomato+ plaques was determined as a percentage of total plaques 

(round 1 of plaque purification). Two parallel, independent transfections were carried 

out and a plaque was selected from each transfection. Multiple rounds of plaque 

purification were performed and the percentage of Tdtomato+ plaques was determined 

until they were found to be free from wildtype virus as shown by microscopy and PCR.  
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Figure 3-18. Confirmation of the UL26/27 intergenic region as the site of 

insertion of Tdtomato cassette in HSV-1 pICP47/Tdtom. (A) DNA of HSV-1 KOS and 

HSV-1 pICP47_Tdtom was digested with EcoRV overnight and analysed by agarose gel 

electrophoresis. The Tdtomato expression cassette contains an additional EcoRV site. 

This results in the addition of an extra 2.155 kb sequence into the ~14.9 found in wt 

KOS (likely to be the unresolved doublet indicated by the purple arrow), which will be 

cleaved by digestion with EcoRV into ~3.9 kb and 13.1 kb fragments (the approximate 

size is indicated using red and yellow arrows, respectively). The sizes of relevant 

fragments of the 1 kb DNA extension ladder are indicated using green arrows. 
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Figure 3-19. Insertion of Tdtomato into the UL26/UL27 intergenic region has no 

effect on replication kinetics either in vitro or in vivo relative to HSV-1 KOS. The 

replication of HSV-1 pICP47/Tdtom (blue) was compared to parent wildtype HSV-1 

KOS (black) in Vero cells in a multiple step growth curve. Confluent cell monolayers in 

9.6 cm2 tissue culture wells were infected at a low MOI (0.01 PFU/cell in 1 mL M0). 

After one hour, the inoculum was removed, cells washed and 2 mL M2 added. A 0 hour 

p.i. sample was collected immediately after the addition of fresh media. The remaining 

samples were harvested at 6, 24, 48 or 72 hours p.i. Virus titres were determined by 

standard plaque assay. Data are mean±SEM of three replicates.  
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Figure 3-20. Insertion of eGFP/Cre under various HSV-1 promoters into the 

UL3/UL4 intergenic region has no effect on virus growth in vitro relative to HSV-1 

KOS. The replication of (A) HSV-1 pICP47_eGC, (B) HSV-1 pICP0_eGC, (C) HSV-1 

pICP6_eGC, (D) HSV-1 pgB_eGC or (E) HSV-1 pC_eGC (blue) was compared to the parent 

wildtype HSV-1 KOS or HSV-1 pCmC (black) in Vero cells in multiple step growth 

curves. Confluent cell monolayers in 9.6 cm2 tissue culture wells were infected at a low 

MOI (0.01 PFU/cell in 1 mL M0). After one hour, the inoculum was removed, cells 

washed and 2 mL M2 was added. A 0 hour p.i. sample was collected immediately 

following the addition of fresh media. The remaining samples were harvested at 6, 24, 

48 or 72 hours p.i. Virus titres were determined by standard plaque assay. Data are 

mean±SEM of three replicates.  
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Figure 3-21. Insertion of eGFP/Cre under the control of an IRES into the LAT 

region has no effect on virus growth in vitro relative to HSV-1 KOS. (A) The 

replication of HSV-1 LAT pCmC (blue) was compared to the parent wildtype HSV-1 KOS 

(black) in Vero cells in a multiple step growth curve. (B) The replication of HSV-1 

pLAT_eGC (red) was compared to the parent wildtype HSV-1 LAT pCmC (blue) and 

wildtype HSV-1 KOS (black) in Vero cells in a multiple step growth curve. Confluent cell 

monolayers in 9.6 cm2 tissue culture wells were infected at a low MOI (0.01 PFU/cell in 

1 mL M0). After one, the inoculum was removed, cells washed and 2 mL M2 was added. 

A 0 hour p.i. sample was collected immediately following the addition of fresh media. 

The remaining samples were harvested at 6, 24, 48 or 72 hours p.i. Virus titres were 

determined by standard plaque assay. Data are mean±SEM of three replicates.  
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pCmC by another multiple step growth curve (MOI 0.01; Figure 3-21B). This confirmed 

that HSV-1 pLAT_eGC, HSV-1 LAT pCmC and HSV-1 KOS have a similar replicative ability in 

vitro. 

3.5.2 Confirmation of expression kinetics of ectopic promoters 

One way to distinguish the three major classes of HSV-1 genes is by their expression 

following the treatment of infected cells with different drugs. Cycloheximide inhibits 

translation, and so viral genes will only be transcribed in the presence of this drug if their 

expression is not dependent on viral transactivators synthesised after HSV-1 infection. In 

other words, cycloheximide inhibits the expression of the early and late genes, but not the 

immediate genes (Honess and Roizman, 1974). Another drug, acyclovir, blocks HSV-1 DNA 

replication, and so prevents the expression of the γ2 genes, but not the immediate early, 

early and γ1 genes (Nichol et al., 1996; Summers and Leib, 2002).  

In order to confirm that the expression under the ectopic promoters used in this thesis is 

as predicted based on their kinetic class the expression of the eGFP/Cre cassette following 

drug inhibition was tested. A cycloheximide reversal experiment was performed in which 

Vero cell monolayers were infected with each recombinant virus in the presence or 

absence of cycloheximide. After six hours, the cycloheximide block is reversed and 

replaced with actinomycin D, which blocks transcription, allowing only the accumulated 

mRNA to be translated into protein (Honess and Roizman, 1974; Honess and Roizman, 

1975; Summers and Leib, 2002). In addition, separate Vero cell monolayers were infected 

with each recombinant virus in the presence of acyclovir. The concentration of acyclovir 

used was able to prevent transcription of the γ2 gene encoding gC, but not the other genes 

expressed with immediate early or early kinetics, such as US12, as detected by semi-

quantitative RT-PCR (data not shown). 

As shown in Figure 3-22A&D, detectable eGFP expression was observed in the absence of 

any treatment as expected for all recombinant viruses that contain the eGFP/Cre cassette, 

with the exception of HSV-1 pLAT_eGC. However, the LAT promoter is not expressed in 

Vero cells, so this result was expected (refer to Section 3.3.2.2). Neither cycloheximide nor 

acyclovir inhibition prevented expression of eGFP in cells infected with HSV-1 pICP0_eGC 

or HSV-1 pICP47_eGC, confirming that eGFP is expressed as would be expected when 

under the control of an immediate early promoter. Similarly, expression of eGFP by HSV-1 

pC_eGC was not prevented by either of these drugs. In this case it likely reflects that the 

CMV IE promoter is largely independent of the cascade of HSV-1 gene expression (Arthur 

et al., 2001; Preston and Nicholl, 1997; Stinski and Roehr, 1985). Although cycloheximide  
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Figure 3-22. Characterisation of promoter class in vitro. Confluent Vero cell 

monolayers in 2 cm2 tissue culture wells were pretreated with either (C&F) 

cycloheximide or (B&E) 50 µM acyclovir, or left untreated (A&D) for one hour. Cells 

were then infected at a high MOI (5 PFU/cell in 500 µL M0 with appropriate drug) with 

HSV-1 KOS, HSV-1 pLAT_eGC, HSV-1 pgB_eGC, HSV-1 pICP6_eGC, HSV-1 pICP0_eGC, 

HSV-1 pICP47_eGC or HSV-1 pC_eGC, or left uninfected. After one hour, the inoculum 

was removed, and 1 mL M2 was added, with appropriate drug if required. Cells were 

incubated for six hours at 37°C, 5% CO2
 before cycloheximide was removed and 

actinomycin D added to these wells. Cells were incubated for a further four hours at 

37°C, 5% CO2. (A-C) Cells were photographed for eGFP expression at 400× 

magnification (scale bar = 50 μm, as indicated on top left photograph). (D-F) Cells were 

then fixed and eGFP expression assessed by flow cytometry. The shaded grey area 

represents the eGFP expression of uninfected cells for the top panels, and the eGFP 

expression of HSV-1 KOS infected cells for all remaining figures. The expression of eGFP 

by the infected cells is shown in either blue (untreated), red (acyclovir treated) or 

green (cycloheximide treated).  
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was able to prevent eGFP expression from HSV-1 pICP6_eGC and HSV-1 pgB_eGC, acyclovir 

was not able to block eGFP expression, as would be expected for an early or γ1 promoter 

(Figure 3-22).  

Treatment with acyclovir did slightly decrease the expression of eGFP in all cells infected 

with a virus expected to express eGFP (Figure 3-22C&F). This has previously been 

observed by Nichol and colleagues (1996) in infected cultures of superior cervical 

ganglion neurons but not Vero cells, although the semi-quantitative RT-PCR assay used 

was relatively insensitive to transcript levels. Viral replication and secondary spread may 

have occurred in the cells that were untreated compared to those treated with acyclovir, 

but they found that this was unlikely to be the case (Nichol et al., 1996). Similarly, in this 

experiment, the high MOI used and short timeframe in which this experiment was 

conducted mean that the slight inhibition of eGFP expression by acyclovir is very unlikely 

to be accounted for by viral replication and secondary spread of virus. However, it does 

remain difficult to account for this observation. In conclusion, based on the cycloheximide 

reversal assay and acyclovir inhibition assay, all the defined promoters used in this thesis 

were expressed as would be expected based on their kinetic class. 

3.5.3 Assessment of pathogenesis and growth of recombinant viruses 

in vivo 

To confirm that the pathogenesis of recombinant HSV-1 containing an eGFP/Cre marker 

gene was comparable to HSV-1 KOS in vivo, C57Bl/6 mice were infected with either HSV-1 

KOS or a recombinant HSV-1, and lesion size was monitored daily. All mice developed a 

zosteriform lesion, indicating that the virus was able to spread within the PNS back to the 

skin. For all viruses tested, namely HSV-1 pICP47_eGC, HSV-1 pICP6_eGC and HSV-1 

pgB_eGC, a similar lesion progression to HSV-1 KOS was observed (Figure 3-23). 

To determine if these viruses had a similar replicative ability to HSV-1 KOS in vivo, 

C57Bl/6 mice were infected with either HSV-1 KOS, HSV-1 pICP47_eGC, HSV- 1pICP6_eGC 

or HSV-1 pgB_eGC and the amount of virus in the skin and DRG at five days p.i. was 

determined. Although the size of the lesions on these mice was not measured, mice were 

checked daily to confirm that they developed lesions as would be expected. All mice 

developed primary lesions by day three p.i. and showed signs of zosteriform spread of 

virus on day five p.i. The amount of virus found in the skin or DRG was similar for all 

viruses relative to HSV-1 KOS for all viruses tested (Figure 3-24).  

The flank tattoo infection method for assessing viral growth and pathogenesis has several 

advantages. While lesions are not measured, mice are checked daily to ensure they  
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Figure 3-23. Insertion of eGFP/Cre under various HSV-1 promoters into the 

UL3/UL4 intergenic region has no effect on lesion development in mice relative to 

HSV-1 KOS. C57Bl/6 mice were infected by tattoo with 1×108 PFU/mL with HSV-1 KOS 

or the appropriate recombinant virus. Lesion size was measured daily using a caliper 

and clinical score was monitored daily, with mice never displaying any signs of illness 

other than the herpetic lesion on the flank. (A) Comparison of mean lesion size of 

C57Bl/6 mice infected with 1×108 PFU/mL HSV-1 KOS (black) or HSV-1 pICP47_eGC 

(blue). (B) Comparison of mean lesion size of C57Bl/6 mice infected with 1×108 

PFU/mL HSV-1 KOS (black) or HSV-1 pICP6_eGC. (C) Comparison of mean lesion size of 

C57Bl/6 mice infected with 1×108 PFU/mL HSV-1 KOS (black) or HSV-1 pgB_eGC 

(blue). Data is mean lesion size±SEM (n = 5). Data was analysed by a Kruskal-Wallis 

test, but in all cases the differences in the median lesion size was insignificant (p > 

0.05).  
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Figure 3-24. Insertion of eGFP/Cre under various HSV-1 promoters into the 

UL3/UL4 intergenic region has no effect on virus growth in vivo relative to HSV-1 

KOS. Groups of four C57Bl/6 mice were infected by tattoo with 1×108 PFU/mL with 

HSV-1 KOS (black), HSV-1 pICP47_eGC (red), HSV-1 pICP6_eGC (yellow) or HSV-1 

pgB_eGC (purple). At five days p.i. mice were culled and infectious virus was 

determined by standard plaque assay from ten DRG (spinal levels L1 to T5) or 1 cm2 

skin located over the inoculation size. The limit of detection is two PFU per sample. 

Circles show results for each mouse (n=4) and bars represent mean±SEM. The amount 

of virus in the skin or DRG of mice infected with each recombinant virus was compared 

to that of HSV-1 KOS using an ANOVA, but the difference in means was not statistically 

significant.  
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develop a primary lesion, typically on day three p.i., and demonstrate signs of secondary 

spread, typically on day five p.i. As secondary, or zosteriform, spread is dependent on HSV-

1 gaining access to the PNS to allow for spread of virus, the observation of secondary 

lesions provides an easy, quick visual means of confirming that the pathogenesis of the 

virus is as expected. It also allows the measurement of virus growth in both the skin and 

DRG. Finally, using this method alone minimises the numbers of mice required to confirm 

the pathogenesis and growth of the recombinant viruses generated in this thesis, and 

therefore was now used exclusively for this purpose. 

Given this, the growth of HSV-1 pC_eGC was assessed relative to HSV-1 KOS in C57Bl/6 

mice. All mice developed primary lesions by day three p.i. and showed signs of zosteriform 

spread of virus on day five p.i. Again, the amount of virus in the skin and DRG was 

measured at day five p.i. (Figure 3-25). The amount of virus in both the skin and DRG was 

similar in both the HSV-1 KOS and HSV-1 pC_eGC infected mice. 

To assess the growth of HSV-1 pICP47/Tdtom, C57Bl/6 mice were infected on the flank 

with either HSV-1 KOS or HSV-1 pICP47/Tdtom. All mice developed a primary lesion on 

day three p.i. and zosteriform spread could be identified on day five p.i. On day five p.i., 

mice were culled and growth of virus in the DRG and skin was determined by standard 

plaque assay. The growth of HSV-1 pICP47/Tdtom was not compromised relative to HSV-1 

KOS (Figure 3-26). There was a statistically significant difference in growth of HSV-1 

pICP47/Tdtom in the skin compared to HSV-1 KOS, but this increase was only just over 

three-fold and is unlikely to be biologically significant. 

Similarly, the growth of HSV-1 pICP0_eGC was determined compared to HSV-1 KOS in 

C57Bl/6 mice by quantifying the amount of virus in the skin and DRG at five days p.i. 

(Figure 3-27). Again, the amount of virus in the skin and DRG was comparable for HSV-1 

KOS and HSV-1 pICP0_eGC infected mice. All mice developed primary and zosteriform 

lesions as expected. 

Finally, to verify that HSV-1 pLAT_eGC demonstrates similar growth in vivo compared to 

HSV-1 KOS, first the growth of the parent HSV-1 LAT pCmC was assessed relative to HSV-1 

KOS in C57Bl/6 mice. At five days p.i. there was a similar titre of virus in both the skin and 

DRG (Figure 3-28). Then, the growth of HSV-1 pLAT_eGC was compared to HSV-1 KOS in 

C57Bl/6 mice at five days p.i., with a similar amount of virus in both the skin and DRG 

(Figure 3-28). In both cases, all mice showed a normal progression of lesion development. 
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Figure 3-25. HSV-1 pC_eGC has no defect in virus growth in vivo relative to HSV-1 

KOS. Groups of four C57Bl/6 mice were infected by tattoo with 1×108 PFU/mL with 

HSV-1 KOS (black) or HSV-1 pC_eGC (blue). At five days p.i. mice were culled and 

infectious virus was determined by standard plaque assay from ten DRG (spinal levels 

L1 to T5) or 1 cm2 skin located over the inoculation size. The limit of detection was two 

PFU per tissue. Circles show results for each mouse (n=4) and bars represent 

mean±SEM. The means were compared in each tissue by an unpaired t test, but in both 

cases the difference was not statistically significant (p > 0.05). 
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Figure 3-26. Insertion of Tdtomato into the UL26/UL27 intergenic region has no 

effect on replication kinetics in vivo relative to HSV-1 KOS. Groups of four C57Bl/6 

mice were infected by tattoo with 1×108 PFU/mL with HSV-1 KOS (black) or HSV-1 

pICP47/Tdtom (blue). Infectious virus was determined by standard plaque assay from 

ten DRG (spinal levels L1 to T5) or 1 cm2 skin located over the inoculation size five days 

after infection. The limit of detection was two PFU for each tissue. Circles show results 

for each mouse (n=4) and bars represent mean±SEM. The means were compared by an 

unpaired t test, where significance is denoted by * (p < 0.05) or as ns (not significant). 
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Figure 3-27. HSV-1 pICP0_eGC has no defect in virus growth in vivo relative to the 

HSV-1 KOS. Groups of four C57Bl/6 mice were infected by tattoo with 1×108 PFU/mL 

with HSV-1 KOS (black) or HSV-1 pC_eGC (blue). At five days p.i. mice were culled and 

infectious virus was determined by standard plaque assay from ten DRG (spinal levels 

L1 to T5) or 1 cm2 skin located over the inoculation size. The limit of detection was two 

PFU per tissue. Circles show results for each mouse (n=4) and bars represent 

mean±SEM. The means were compared in each tissue by an unpaired t test, but in both 

cases the difference was not statistically significant (p > 0.05). 
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Figure 3-28. Insertion of eGFP/Cre under the control of an IRES into the LAT 

region has no effect on virus growth in vivo relative to HSV-1 KOS. Groups of three 

or four C57Bl/6 mice were infected with 1×108 PFU/mL HSV-1 by tattoo. At five days 

p.i., mice were culled and the amount of infectious virus was determined by standard 

plaque assay from ten DRG (spinal levels L1 to T5), or 1 cm2 skin located over the site 

of infection. Circles show results for each mouse and bars represent mean±SEM. The 

limit of detection was two PFU per tissue. The means were compared in each tissue by 

an unpaired t test, but in all cases the difference was not statistically significant (p > 

0.05). (A) Comparison of amount of virus in C57Bl/6 mice infected with HSV-1 KOS 

(black) or HSV-1 LAT pCmC (blue). (B) Comparison of amount of virus in C57Bl/6 mice 

infected with HSV-1 KOS (black) or HSV-1 pLAT_eGC (red).  
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3.5.4 Ability of recombinant viruses to reactivate from latency to 

produce infectious virus 

Finally, given that the viruses tested can replicate comparably to HSV-1 KOS in vivo and 

show a similar pattern of lesion development, it was important to verify that these viruses 

could reactivate from latency. C57Bl/6 mice were infected by tattoo with HSV-1 KOS, HSV-

1 pICP0_eGC, HSV-1 pICP47_eGC, HSV-1 pICP6_eGC, HSV-1 pgB_eGC, HSV-1 pC_eGC or 

HSV-1 pICP47_Tdtom. The infection was allowed to proceed for 30 days to establish 

latency. The DRG were then explanted and incubated for five days, during which time the 

virus should reactivate. The DRG were then homogenised and the presence of infectious 

virus was then confirmed by infecting Vero cell monolayers with these homogenates. The 

ability of the viruses to express a fluorescent protein as appropriate was also assessed, to 

confirm that the eGFP/Cre or Tdtomato expression cassette was not lost over time. All 

plaques were either eGFP+, Tdtomato+ or, in the case of HSV-1 KOS, non-fluorescent as 

appropriate (Figure 3-29). All mice contained reactivatable virus as determined by this 

assay. A similar experiment was performed to confirm that HSV-1 pLAT_eGC can 

reactivate from latency. C57Bl/6 mice were infected with either HSV-1 KOS, the parent 

virus HSV-1 LAT pCmC or HSV-1 pLAT_eGC. At 30 days p.i. the DRG were explanted and 

incubated for five days to assess reactivation. The DRG were then homogenised and the 

homogenates were used to infect Vero cell monolayers. Retrievable infectious virus 

detected from all mice, indicated all viruses can reactivate. As expected, only those cells 

which were infected with the explanted homogenised DRG from mice infected with HSV-1 

LAT pCmC had observable mCherry fluorescence, and no eGFP fluorescence was 

detectable for any sample (Figure 3-30). 

 

3.6 Discussion 

This chapter focused on the development of homologous recombination-based strategies 

for engineering HSV. Initially, a conventional approach was used that relied upon 

cotransfection of viral genomic and transfer plasmid DNA. While the cotransfection-based 

method is widely used, when employed to construct the viruses required for this thesis, it 

was not always reliable and was time consuming. The efficiency of recombination when 

the cotransfection method was used to generate recombinant virus was comparable to 

that previously reported in the literature, typically 0.1 – 5% (Kolb and Brandt, 2004; 

Krisky et al., 1997), but most of the plaques selected were unable to be plaque purified to 

yield pure recombinant virus. Anecdotally, the lack of success achieved when using this 

method to construct recombinant virus is probably due to the poor quality of the genomic  



169 

Figure 3-29. Fluorescent reporter genes inserted into the UL3/UL4 or UL26/UL27 

intergenic region are not lost and maintain function during infection of mice. 

Groups of two C57Bl/6 mice were infected by tattoo with 1×108 PFU/mL of one of the 

viruses listed. At 30 days pi, DRG from spinal levels T5 to L1 were removed and 

incubated at 37°C for reactivation by explant. After five days DRG were homogenised, 

and the homogenates were titrated on Vero cells. Representative plaques formed by the 

parent virus HSV-1 KOS and the recombinant viruses on Vero cells under semi-solid 

M2-CMC as shown by phase contrast microscopy or fluorescence microscopy for the 

detection of eGFP or Tdtomato at 100× magnification (scale bar = 150 µm, as indicated 

on top left photograph). 
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Figure 3-30. Fluorescent reporter genes inserted into the LAT region under the 

control of the CMV IE, but not LAT, promoter of HSV-1 are expressed in vitro 

following reactivation. Groups of two C57Bl/6 mice were infected by tattoo with 

1×108 PFU/mL of one of the viruses listed. At 30 days pi, DRG from spinal levels T5 to 

L1 were removed and incubated at 37°C for reactivation by explant. After five days DRG 

were homogenised, and the homogenates were titrated on Vero cells. Representative 

plaques formed by the parent virus HSV-1 KOS and the recombinant viruses on Vero 

cells under semi-solid M2-CMC as shown by phase contrast microscopy or fluorescence 

microscopy for the detection of eGFP or mCherry at 100× magnification (scale bar = 

200 µm, as indicated on the top left image). 
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DNA isolated. The infectivity of the whole viral genome preparation used was 

approximately 61 plaques per µg of DNA (data not shown), less than the 100-1000 plaques 

per µg of viral DNA recommended for the generation of recombinant HSV-1 vectors 

(Burton et al., 2003b; Goins et al., 2008). Methods were pursued to improve HSV-1 DNA 

quality, such as the dialysis rather than sodium acetate/ethanol precipitation of genomic 

DNA following phenol/chloroform extraction to prevent shearing of DNA, but were 

ultimately abandoned. In the meantime, the transfection/infection method for the 

generation of recombinant HSV-1 was investigated as it is not dependent upon isolating 

high quality DNA (Foster et al., 1999; Orr et al., 2005). Although the initial frequency of 

recombination was slightly lower when the transfection/infection method was used 

compared to the traditional cotransfection method, in all cases the desired recombinant 

virus was able to be isolated. This method was efficient enough to reliably generate 

recombinant HSV using a strong marker for screening, in this case a fluorescent protein. 

While the impact of several variables on this process was examined, it was found that a 

transfection efficiency of more than 20% was crucial. Further, higher efficiencies of 

transfection efficiency improved the proportion of recombinant progeny. Similarly, 

increasing the length of flanking sequence used in the transfer plasmids improved the 

generation of recombinant virus. This supports the recommendation that more than 500 

bp of homologous sequence that flanks the desired site of infection is required in the 

transfer vector, although this was not systematically examined (Coffin, 2010; Goins et al., 

2008). However, the slight increase in the frequency of recombinant virus should be 

weighed against the lower transfection efficiencies typically achieved with larger plasmids 

(data not shown; McLenachan et al., 2007). Although the efficiency could be altered by up 

to 10-fold, the optimisation of this method did not improve efficiency to such an extent 

that PCR screening alone would be viable for the identification of recombinant virus 

without the aid of a selectable marker. 

The impact of the recently described CRISPR/Cas9-based genome editing technology on 

the ability to alter genomes of a variety of organisms is considerable (Cong et al., 2013; 

Gratz et al., 2013; Hwang et al., 2013; Li et al., 2013; Mali et al., 2013). So far, the majority 

of interest in the application of this technology in the field of virology has focused on 

disrupting viral DNA as a potential therapeutic treatment (Ebina et al., 2013; Hu et al., 

2014; Kennedy et al., 2015a; Kennedy et al., 2014; Wang and Quake, 2014; Zhen et al., 

2015). For example, the use of a Cas9 system targeting the HIV-1 long terminal repeats can 

disrupt HIV-1 provirus in Jurkat cell and microglial cell lines (Ebina et al., 2013; Hu et al., 

2014). Similarly, a Cas9-based approach targeting the Hepatitis B surface antigen, core and 

reverse transcriptase proteins was able to suppress viral replication and dramatically 
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reduced viral DNA levels in an in vitro HepAD38 chronic Hepatitis B infection model and 

HepaRG model, which mimics the early phases of infection (Kennedy et al., 2015a). 

Overall, however, there has been less published on the application of Cas9-based 

technologies for constructing mutant or recombinant viruses. Cas9-based technologies 

have the potential to greatly facilitate this process, particularly when considering large, 

double-stranded DNA viruses that have proved less amenable to manipulation than 

smaller viruses (Bi et al., 2014). Recently, the manipulation of the vaccinia virus and 

adenovirus genomes using a Cas9-based approach was performed, with a high frequency 

of recombination that was advantageous over previous methods used to engineer these 

viruses (Bi et al., 2014; Yuan et al., 2015). Cas9-based targeting has been used to engineer 

HSV in a limited number of publications, with a dramatic improvement in the frequency of 

recombination identified (Bi et al., 2014; Suenaga et al., 2014). In this thesis and as we 

published (Russell et al., 2015), the incorporation of a mCherry-targeting Cas9 plasmid 

into the transfection/infection method used led to a large improvement in the initial 

frequency of recombination. The adoption of a CRISPR/Cas9-based approach also 

facilitated the construction of recombinant viruses without the use of a fluorescent marker 

screening. 

Consistent with previously published results (Bi et al., 2014; Suenaga et al., 2014), not all 

the virus obtained following Cas9 cleavage of the mCherry sequence in HSV-1 pC_mC 

during transfection/infection contained the desired modification. Since the Cas9/gRNA 

complex is efficiently expressed, many complexes can accumulate within a cell to cleave 

the viral genome. It was speculated that the failure to modify the viral genome as desired 

is caused not by inefficient cleavage of the viral genome, but a failure to repair it correctly. 

Given the multiple viral genome copies per cell, the repair template may have been 

limiting, but altering the ratio of repair to Cas9-containing plasmid did not alter the 

proportion of fluorescent progeny produced. Therefore, the presence of multiple copies of 

the viral genome within the cell may exhaust the limited ability of the cellular mechanisms 

to repair such double-stranded breaks, particularly in light of HSV-1’s ability to shut down 

host protein synthesis via various mechanisms (Hardy and Sandri-Goldin, 1994; Read and 

Frenkel, 1983; Spencer et al., 1997).  

In this thesis, it was found that the use of transfer plasmids with long homology sequences 

flanking the insertion site is of less importance when Cas9 is used to cleave the viral 

genome compared to the conventional transfection/infection method. This is not 

surprising, given that Suenaga and colleagues (2014) used a 150 bp single-stranded 

oligonucleotide as a repair template when restoring a gE deletion virus to wildtype, which 

would be technically difficult using a conventional homologous recombination-based 
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method for generating HSV-1 mutants (Kolb and Brandt, 2004; Krisky et al., 1997). 

Although the generation of this revertant virus was less efficient than the generation of the 

original gE deletion virus using the Cas9-based system, it proved feasible (Suenaga et al., 

2014). Further, the Cas9-based system seems relatively insensitive to alterations in 

protocol when using the same gRNA. The two main determinants of the efficiency of the 

Cas9 system are thought to be the expression levels of the CRISPR RNA and the target 

sequence used (Jinek et al., 2013). For example, a gRNA targeting the gene encoding gE 

was substantially more effective than those gRNAs used to target UL23 (Bi et al., 2014; 

Suenaga et al., 2014).  

One of the major sources for concern when using a genome editing methodology such as 

CRISPR/Cas9 is the potential for off-target effects, in which a mutation, typically a small 

insertion or deletion, occurs at an undesired location in the genome. The gRNA recognises 

a 22-bp target DNA sequence that can tolerate mismatches at several nucleotide positions, 

suggesting that in the context of the human genome there may be thousands of off target 

sites (Cong et al., 2013; Fu et al., 2013; Hsu et al., 2013; Jinek et al., 2012; Pattanayak et al., 

2013). To date though, there are conflicting reports of the frequency of off-target effects as 

determined by various methodologies including whole genome or exome sequencing and 

deep sequencing, amongst others (Cho et al., 2014; Fu et al., 2013; Hsu et al., 2013; Kim et 

al., 2015; Pattanayak et al., 2013; Veres et al., 2014). There are a number of bioinformatics-

based approaches for the design of gRNAs to try and minimise off target effects that 

account for the small size of the gRNA, but the in vitro or in vivo effectiveness of these 

remains to be seen (Bae et al., 2014; Xiao et al., 2014; Xie et al., 2014; Zhu et al., 2014). One 

strategy that reduces the frequency of off-target effects by at least fifty fold is the use of 

paired Cas9-nickases that introduce two individual nicks in the genome. These nicks are 

repaired with high fidelity through the base excision or homologous recombination repair 

pathways. Unfortunately, the nickase-based approach does require two highly active 

gRNAs, which can limit targetable sites (Cho et al., 2014; Mali et al., 2013; Ran et al., 2013).  

Generally, off-target effects will always be of less concern when considering using a 

CRISPR/Cas9-based approach to edit the comparatively small viral genome, and there is 

evidence that in the context of viral genome engineering they can be avoided entirely (Bi 

et al., 2014). While several single base pair mutations were identified in the UL3 gene of 

HSV-1 pICP0_eGC that was constructed using a CRISPR/Cas9-based approach (refer to 

Section 3.3.2.1), other viruses were constructed where mCherry was targeted and no 

mutations were identified in UL3 (refer to Section 5.4.1). Furthermore, at best the mCherry 

targeting sequences will bind to UL3 with eight mismatches, none of which are located 

near the site of the single base pair mutations observed. So, it is unlikely the gRNA used 



174 

could have bound to the sites were the mutations occurred. Previous attempts to construct 

this virus without the aid of Cas9 failed to yield eGFP+ plaques, suggesting that the 

insertion of the ICP0 promoter sequence at this location may cause instability in the viral 

genome, which may be compensated for by mutations in UL3. When constructing 

recombinant viruses, it is always possible that undesirable mutations to the viral genome 

occur, regardless of whether Cas9 is employed to facilitate this process or not (Gierasch et 

al., 2006). 

While the use of the UL26/UL27 insertion site is not novel, in this thesis a position between 

the polyA signals associated with these two transcription units was chosen and care was 

taken that no HSV sequence was deleted. It is unclear why previous attempts to add genes 

into this region led to attenuation, but it may be related to the failure to maintain the 

native polyA of UL26 or UL27 (Balliet et al., 2007; Foster et al., 1999; Orr et al., 2005).  

All the elements associated with transcription in the UL26/UL27 region may not be able to 

be easily replaced, with outcomes that may not be able to be well predicted, which is 

important to consider when designing recombinant HSV-1. 

The use of recombinant HSV that express marker genes, such as fluorescent proteins like 

eGFP, for examining viral pathogenesis cannot be underestimated. However, some of those 

viruses previously described in the literature have alterations in virus growth or 

pathogenesis (Balliet et al., 2007; Orr et al., 2005). In at least one case, there was 

instability of the insert in the genome and loss of eGFP expression, presumably due to the 

presence of direct sequence repeats flanking the insert (Balliet et al., 2007). In another 

case, loss of eGFP expression occurred over time, possibly by repression of eGFP 

expression as the eGFP cassette was retained in the genome (Balliet et al., 2007; Foster et 

al., 1999). Many HSV-1 engineered to express foreign genes contain deletions of some of 

the viral genome, albeit often in genes that are deemed non-essential or whose function 

has not been identified (Mocarski et al., 1980; Potel et al., 2002; Proença et al., 2008; 

Ramachandran et al., 2008; Wakim et al., 2008b). Therefore, the characterisation of the 

recombinant viruses used in this thesis was of critical importance. For all viruses 

generated for use in this thesis, there were no obviously discernible changes in virus 

growth or pathogenesis, and all were constructed such that there would be no loss of viral 

sequence and minimal disruption to the genome.  

Overall, several methods for the generation of recombinant viruses were explored in this 

chapter, with the use of the CRISPR/Cas9 based method providing the single greatest 

increase in efficiency. These methods have been used to construct ten different 
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recombinant HSV, which express a range of fluorescent proteins under the control of 

several promoters from three different locations in the genome.  
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4 | HSV-1 lytic gene expression during the  

establishment and maintenance of latency 
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4.1 Introduction 

One of the hallmarks of HSV-1 latency is the marked repression of viral gene transcription, 

with only the LATs able to be abundantly detected (Bastian et al., 1972; Cook et al., 1974; 

Shimeld et al., 2001; Stevens and Cook, 1971). A few early studies found evidence of low 

level, likely transient, transcription of lytic genes during latency, but there is even less 

evidence that detectable viral protein is produced. This activity was typically either 

deemed biologically irrelevant, or a consequence of low level reactivation that does not 

result in detectable infectious virus or symptoms (Chen et al., 2002a; Chen et al., 1997; Du 

et al., 2011; Feldman et al., 2002; Giordani et al., 2008; Green et al., 1981; Kramer and 

Coen, 1995; Kramer et al., 1998; Maillet et al., 2006; Margolis et al., 2007a; Pesola et al., 

2005; Preston, 2000; Sawtell, 2003; Tal-Singer et al., 1997). However, the retention of 

activated CD8+ T cells within the sensory ganglia of latently infected mice and humans 

argues for the production of viral protein during latency (Halford et al., 1996a; Khanna et 

al., 2003; Van Lint et al., 2005; van Velzen et al., 2013). The CD8+ T cell response is highly 

focused, with at least half of those cells retained in the DRG of latently infected C57Bl/6 

mice being specific for the gB498 epitope, derived from the late protein gB (Khanna et al., 

2003; St. Leger et al., 2011). However, there is no direct evidence for detectable gB protein 

expression during latency. More recently, using a sensitive approach based on single cell 

analysis of transcription in latently infected mouse DRG, Ma and colleagues (2014) found a 

more extensive pattern of viral gene transcription during latency, with more than two 

thirds of all latently infected neurons containing transcripts of at least one lytic gene. 

Additionally, host antiviral and survival gene transcription was modulated in response to 

the presence of lytic viral transcripts. This clearly indicates that the viral transcription 

observed is likely to be biologically relevant.  

The use of conventional reporter genes has proved invaluable for tracking viral gene 

expression during the acute HSV-1 infection (Balliet et al., 2007; Lachmann et al., 1999; 

Margolis et al., 1993; Summers et al., 2001). Unfortunately, such reporters are ill suited to 

the detection of the low level or transient expression of HSV-1 lytic genes that may occur 

during latency. The ROSA26R/Cre mouse system is ideal for examining HSV-1 promoter 

activity during latency as it allows the examination of historic gene expression and is not 

dependent on continual promoter activity (refer to Section 1.4). This system has been 

used previously to reveal that a large population of neurons that experience immediate 

early, but not early or late, classes of viral promoter expression are able to survive the lytic 

infection and establish latency. To date, no promoter activity associated with lytic gene 

expression was detectable during latency, as demonstrated by an increased number of β-

gal+ cells. However, only a small number of well-characterised HSV-1 promoters of each 
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class of the viral gene expression cascade have been employed thus far (Nicoll et al., 2012; 

Proença et al., 2008; Proença et al., 2011; Wakim et al., 2008b).  

The first aim of this chapter is to define further the kinetics of acute infection and size of 

the latent viral reservoir. This relies on the use of both the ROSA26R/Cre reporter system 

as well as conventional methods for tracking the acute HSV-1 infection. The next two 

sections focus on the primary aim of this chapter, which is to measure the accumulation of 

β-gal marked cells in ROSA26R mice infected with HSV-1 as dictated by different HSV-1 

lytic gene promoters. This involves examining historic viral gene expression during the 

acute infection, as well as the establishment and maintenance of latency. In particular, the 

focus is on the promoters of those viral genes that are associated with the antigen 

recognised by the host’s CD8+ T cell response, including gB. The third section is closely 

related and examines whether all lytic gene promoters of the same class of viral gene 

expression are historically expressed with similar kinetics in vivo. Finally, the fourth 

section examines the historical expression of LAT throughout the establishment and 

maintenance of latency in the ROSA26R mouse model. 

 

4.2 HSV-1 continues to spread after the acute infection is 

curtailed 

4.2.1 Historical analysis of HSV-1 infection reveals continued spread of 

virus beyond the peak of infection 

Coupling cre expression with the strong constitutive CMV IE promoter allows the 

population of latently infected neurons to be easily tracked. It has been shown that the 

CMV IE promoter is briefly active in cultured sensory neurons prior to the establishment 

of a latent infection (Arthur et al., 2001), suggesting it is likely active in all HSV-1 infected 

cells in vivo, regardless of the outcome of infection. This was confirmed by Ma and 

colleagues (2014), who used single-cell qPCR for the detection of HSV-1 genomes in ROSA-

YFP mice, which are analogous to the ROSA26R mice used in this thesis, infected with a 

virus expressing cre under the CMV IE promoter. They demonstrated that less than 20% of 

cells that fail to express YFP contain HSV-1 genomes. Since the limit of detection was 10 

genome copies, it is reasonable to assume that the use of the CMV IE promoter in the 

ROSA26R/Cre mouse system allows for the marking of the overwhelming majority of 

infected cells, regardless of whether a lytic or latent infection is established (Ma et al., 

2014). Therefore, the verification of the kinetics of HSV-1 infection was attempted using 

the ROSA26R mouse model as previously described (Proença et al., 2008; Wakim et al., 
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2008b). This was combined with the zosteriform model of HSV-1 infection, which exploits 

the segmental cutaneous innervation of vertebrates to track the anatomical spread of viral 

gene expression within the PNS (refer to Section 3.2.1 for a more detailed description of 

this model; Speck and Simmons, 1991). In addition, more time points were included 

compared to previous studies (Proença et al., 2008; Wakim et al., 2008b), to enable the 

progression of infection to be closely monitored, particularly between the acute and latent 

infection. 

In order to quantify the progression of infection, ROSA26R mice were infected with HSV-1 

pC_eGC, and culled at various times p.i. to allow quantification of the number of β-gal+ cells 

in DRG. As expected, HSV-1 pC_eGC related β-gal expression was readily detectable in a 

sizeable population of cells across multiple ganglia (Figure 4-1). There was a substantial 

rise in the number of β-gal+ cells between five and 10 days p.i. (Figure 4-2), an unexpected 

finding as the peak in the acute infection is usually around day four p.i. as defined by the 

presence of detectable infectious virus (Van Lint et al., 2004). Further spread of virus to 

other distal sensory ganglia was found at this later time, as shown by the number of DRG 

that contain at least one β-gal marked cell (Figure 4-2B). This extends to an average of 

more than seven and up to 10 DRG. Many of the distal DRG contain sensory neurons that 

do not directly innervate the site of infection, even allowing for the overlap in adjacent 

dermatomes (Speck and Simmons, 1991). The number of β-gal+ cells declined between 

days 10 and 20 p.i., presumably as neurons die as either a consequence of lytic infection or 

the host’s immune response. The number of β-gal+ cells plateaued during latency until day 

40 p.i., supporting the hypothesis that little, in any, virus spread or loss of neurons occurs 

during latency in mice. 

To more thoroughly characterise the kinetics of neuronal marking, ROSA26R mice were 

infected with HSV-1 pC_eGC and culled at two-day intervals from day three to day 15 p.i. 

(Figure 4-3). This revealed that the peak in the number of β-gal+ cells was around day nine 

p.i. (Figure 4-3A). The spread of virus to distal DRG also increased up until approximately 

day nine p.i., after which time it plateaued (Figure 4-3B). This suggests that HSV-1 is 

entering new neurons beyond the peak of the acute infection as defined by conventional 

means and establishing a latent infection. 

4.2.2 The kinetics of the acute HSV-1 infection  

Given the unexpected finding that the peak size of the reservoir of infected cells as defined 

using HSV-1 pC_eGC in the ROSA26R mouse system was at day nine p.i., it was important 

to confirm that the kinetics of acute infection were normal in this model using a  
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Figure 4-1. Photomicrographs of DRG from ROSA26R mice infected with HSV-1 

pC_eGC over time. ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pC_eGC. At 

the indicated times mice were culled and DRG (from spinal levels T5 to L1) were 

removed and processed for the detection of β-gal activity. Photomicrographs were 

taken of each DRG at 40× magnification (scale bar = 300 μm, as indicated on top left 

image). The images of DRG from spinal levels T13 to T7 from an individual mouse are 

shown for each time point, and are representative of two experiments (n = 9; refer to 

Figure 4-2). β-gal+ cells were still detectable in spinal levels L1, T6 and T5 for mice on 

days 10, 20 and 40 p.i. 
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Figure 4-2. Measuring the kinetics of HSV-1 infection using the ROSA26R/Cre 

mouse system reveals that the peak in the size of the infected cell population is 

later than the peak of acute infection as defined by conventional means. Groups of 

four or five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pC_eGC. At 5, 10, 

20 or 40 days p.i. mice were culled and DRG (from spinal levels T5 to L1) removed and 

processed for the detection of β-gal activity. Both (A) the total number of β-gal+ cells 

per mouse and (B) the number of DRG per mouse containing at least one β-gal+ cell are 

shown. Each circle represents one mouse and the black bar represents the mean value 

for all mice at each time point. The results are pooled from two independent 

experiments (n = 9 per time point). Statistical significance was determined by a one 

way ANOVA (p < 0.001) with Bonferroni’s post-test to make pairwise comparisons (*p 

< 0.05). 
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Figure 4-3. A finer time course reveals that the peak in the accumulation of β-gal 

marked neurons in ROSA26R mice infected with HSV-1 pC_eGC is at 9 days p.i. 

Groups of three to five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 

pC_eGC. At 3, 5, 7, 9, 11, 13 or 15 days p.i. mice were culled and the DRG (from spinal 

levels T5 to L1) were removed and processed for determination of β-gal activity. Both 

(A) the total number of β-gal+ cells per mouse and (C) the number of DRG per mouse 

containing at least one β-gal+ cell are shown. Each circle represents one mouse and the 

black bar represents the mean value for all mice at each time point. The results are 

pooled from two independent experiments (n = 8 per time point). (B&D) Statistical 

significance was determined by a one way ANOVA (p < 0.001) with Bonferroni’s post-

test to make pairwise comparisons, with the key statistical differences indicated on (A) 

and (C) (*p < 0.05). 

 



185 

conventional method such as the detection of infectious virus. Therefore, ROSA26R mice 

were infected with HSV-1 pC_eGC and culled daily from one until eight days p.i. The 

innervating DRG ranging from T5 to L1 and the skin around the site of the lesion was 

collected. The amount of virus in these tissues was determined by standard plaque assay 

(Figure 4-4). The peak in viral titre in the DRG occurred on day three p.i., plateauing on 

days four and five p.i., before decreasing until day seven p.i. (Figure 4-4A&B). The viral 

titre in the skin was very high initially, and there was a similar titre of virus in the skin 

until day six p.i. (Figure 4-4C&D). There was a slight drop in the titre of virus measured on 

day four p.i. but only the skin surrounding the visible lesion was collected. However, 

infectious virus may be present in areas of skin where a visible lesion has yet to form, and 

it is likely that the titre of virus in the skin was underestimated on day four. Detectable 

infectious virus was cleared by day eight p.i. Therefore, consistent with previous reports, 

the acute infection as defined by the presence of infectious virus is resolved by day eight 

p.i. (Sawtell et al., 1998; Sedarati et al., 1989; Speck and Simmons, 1998; Van Lint et al., 

2004). 

The detection of the presence of infectious virus may not be sensitive to the presence of 

small amounts of viral activity, and so is not an ideal method for determining when the 

acute infection is resolved. Therefore, the expression of the reporter gene β-gal was 

monitored over the course of the acute infection as an alternate method. The virus KOS6β 

expresses β-gal under the control of the ICP6 promoter. KOS6β has previously been used 

to monitor the progression of infection in the mouse corneal scarification model of HSV-1 

infection. It was found that β-gal activity rose proportionally and concomitantly with the 

detection of infectious virus (Summers et al., 2001). However, this report focused on the 

period shortly after infection, namely the first four days p.i. Therefore, C57Bl/6 mice were 

infected with HSV-1 KOS6β on the flank. Groups of mice were culled at three-day intervals 

from day one p.i. until day 16 p.i., as well as during latency at day 30 p.i. The innervating 

DRG were then removed and the number of β-gal+ cells was estimated. The β-gal activity 

as measured by X-gal staining was not well localised (Figure 4-5), but as I was interested 

in comparing the extent of lytic gene expression on different days p.i., an absolute measure 

of the number of neurons that were expressing β-gal was not essential. To ensure that 

estimates of the number of β-gal+ cells were consistently performed, data from mice culled 

on different days were randomised and counted in a single sitting. Individual mice from 

different experiments were then compared to ensure that the counting of cells was similar.  

The number of β-gal+ cells peaked on day four p.i., and declined significantly by day seven 

p.i. (Figure 4-6). The detection of β-gal expression in a few cells was observable up until 16 

days p.i. in some mice, suggesting continued low level viral gene expression. There are  
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Figure 4-4. Growth of HSV-1 pC_eGC in ROSA26R mice. Groups of two or three 

ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pC_eGC. Mice were culled 

every 24 hours from one to eight days p.i. and (A) ten DRG (from spinal levels T5 to L1) 

and (C) the skin encompassing the lesion were taken and the amount of virus in each 

tissue determined by standard plaque assay. Each circle represents one mouse and the 

black bar represents the mean value for all mice at that time point. The results are 

pooled from two independent experiments (n = 5 – 6 per time point). (B&D) Statistical 

significance was determined by a one way ANOVA followed by Newman Kwel’s post-

test to make pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001). 
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many possible explanations for this continued β-gal expression, such as a prolonged lytic 

infection within a small subset of neurons. It may also represent a resumption of lytic gene 

expression within latently infected neurons. It has been shown that reactivation can occur 

shortly after infection, even at day nine p.i., as shown using the in vivo transient 

hyperthermia model of reactivation (Sawtell, 2003). Alternatively, it is possible that this 

may reflect the spread of virus into new neurons beyond the traditionally defined acute 

infection, described in Section 4.2.1. Finally, the stability of the β-gal protein means that it 

may not well reflect low level or persistent gene expression, particularly following a peak 

in expression (Margolis et al., 1993).  

4.2.3 Identification of a population of neurons that experience HSV-1 

gene expression prior to the establishment of latency 

The use of the HSV-1 Cre/ROSA26R reporter system suggested that the activity of HSV-1 

may continue beyond the acute infection, but the CMV IE promoter is not a typical native 

HSV-1 promoter. To determine if this increase in the number of β-gal+ cells between five 

and 10 days p.i. could be seen when a bona fide HSV-1 promoter is used to drive 

expression of Cre, ROSA26R mice were infected with HSV-1 expressing Cre under the 

control of the immediate early promoter for ICP0. This virus uses a similar promoter 

sequence to the virus ICP0 Cre used by Proença and colleagues (2008) in the ROSA26R 

model (refer to Section 3.3.2.1). 

Mice were then culled at various times p.i., and their DRG removed and β-gal expression 

was assayed (Figure 4-7). Although a smaller population of cells were β-gal+ than was 

observed when the CMV IE promoter was used to direct expression of Cre (Figure 4-2), the 

peak in the number of β-gal+ cells was at 10 days p.i., concurrent with an increase in the 

spread of virus to distal DRG (Figure 4-8). There was a decrease in the number of β-gal+ 

cells until 20 days p.i., with more than half the number of β-gal marked neurons surviving 

into latency. However, from 20 days p.i. and into latency the number of β-gal+ cells 

remained stable, suggesting little, if any, activity of the ICP0 promoter during latency. 

These results are consistent with the findings previously reported by Proença and 

colleagues (2008) when they employed ICP0 Cre in the ROSA26R model. 

It is believed that the expression of the immediate early genes does not necessarily mark 

the engagement of the full cascade of lytic viral gene expression. Therefore, looking at 

historical expression of other classes of viral gene expression may reveal differences in the 

survival of different populations of infected cells. Therefore, ROSA26R mice were infected 

with HSV-1 pICP6_eGC, as this directs the expression of Cre from a prototypical early HSV-

1 promoter. Mice were culled at different times p.i., their DRG removed and the 
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Figure 4-5. Photomicrographs of DRG from C57Bl/6 mice infected with KOS6β 

over time. C57Bl/6 mice were infected with 1×108 PFU/mL KOS6β. At 1, 4, 7, 10, 13, 

16 or 30 days p.i. mice were culled and DRG (from spinal levels T5 to L1) were 

removed and processed for the detection of β-gal activity. Photomicrographs were 

taken of each DRG at 40× magnification (scale bar = 300 μm, as indicated on the top left 

image). The images of DRG from spinal levels T8 to T11 from an individual mouse are 

shown for each time point, and are representative of two independent experiments (n = 

8, refer to Figure 4-6). No β-gal+ cells were observed in the DRG from those spinal levels 

not shown. 
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Figure 4-6. Kinetics of lytic gene expression during HSV-1 infection of C57Bl/6 

mice. Groups of four C57Bl/6 mice were infected with 1×108 PFU/mL KOS6β. At 1, 4, 7, 

10, 13, 16 or 30 days p.i. mice were culled and DRG (from spinal levels T5 to L1) were 

removed and processed for the detection of β-gal activity. Both (A) the total number of 

β-gal+ cells per mouse and (C) the number of DRG per mouse containing at least one β-

gal+ cell are shown. Each circle represents one mouse and the black bar represents the 

mean value for all mice at each time point (n = 8 per time point). The results are pooled 

from two independent experiments. (B&D) Statistical significance was determined by 

an one way ANOVA (p < 0.001) with Bonferroni’s post-test to make pairwise 

comparisons, with the key statistical differences indicated on (A) and (C) (*p < 0.05). 
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Figure 4-7. Photomicrographs of DRG from ROSA26R mice infected with HSV-1 

pICP0_eGC over time. ROSA26R mice were infected with 1×108 PFU/mL HSV-1 

pICP0_eGC. At the indicated times mice were culled and DRG (from spinal levels T5 to 

L1) were removed and processed for the detection of β-gal activity. Photomicrographs 

were taken of each DRG at 40× magnification (scale bar = 300 μm, as indicated on the 

top left image). The images of DRG from spinal levels T8 to T12 from an individual 

mouse are shown for each time point, and are representative of three independent 

experiments (n = 10 – 11, refer to Figure 4-8). β-gal+ cells were not observed in the DRG 

of those spinal levels not shown. 

Figure 4-3. A finer time course reveals that the peak in the accumulation of β-gal 

marked neurons in ROSA26R mice infected with HSV-1 pC_eGC is at 9 days p.i. 

Groups of three to five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 

pC_eGC. At 3, 5, 7, 9, 11, 13 or 15 days p.i. mice were culled and DRG (from spinal levels 

T5 to L1) were removed and processed for the detection of β-gal activity. Both (A) the 

total number of β-gal+ cells per mouse and (C) the number of DRG per mouse 
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Figure 4-8. The number of β-gal marked cells in ROSA26R mice infected with 

HSV-1 pICP0_eGC remains stable throughout latency. Groups of two to five 

ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pICP0_eGC. At 5, 10, 20, 40 or 

100 days p.i. mice were culled and the DRG (from spinal levels T5 to L1) were removed 

and processed for the detection of β-gal activity. Both (A) the total number of β-gal+ 

cells per mouse and (B) the number of DRG per mouse containing at least one β-gal+ 

cell are shown. Each circle represents one mouse and the black bar represents the 

mean value for all mice at each time point. The results are pooled from three 

independent experiments (n = 10 – 11 per time point). Statistical significance was 

determined by a one way ANOVA (p < 0.001) with Bonferroni’s post-test to make 

pairwise comparisons (*p < 0.05). 
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 number of β-gal+ cells was determined. The most striking observation is that only a 

relatively small population of cells were β-gal+ (Figure 4-9). However, in contrast to 

previous observations, the number of β-gal+ cells and the distribution of β-gal marked cells 

across different spinal levels was more consistent over time (Figure 4-10). 

To look at expression of the late HSV-1 genes, mice were infected with HSV-1 pgB_eGC, 

culled at various times p.i. and β-gal expression was assayed in DRG (Figure 4-11). Even 

fewer cells were β-gal marked following infection of ROSA26R mice with HSV-1 pgB_eGC 

compared to HSV-1 pICP6_eGC. An increase was also observed in the number of β-gal+ 

cells between five and 10 days p.i. (Figure 4-12). This was associated with an increase in 

the number of DRG in which β-gal+ cells were detectable, likely reflecting the spread of 

virus to distal spinal levels described in Section 4.2.1. The number of β-gal+ cells declined 

between days 10 and 20 p.i., again consistent with previous observations (refer to Section 

4.2.1). However, there was an almost two fold increase in the number of β-gal+ cells 

between days 20 and 40. This is well within the period operationally accepted as latency. 

This suggested activity under the gB promoter may occur during latency that could lead to 

protein production. 

4.2.4 An estimation of the delay between Cre expression from HSV-1 

and detectable β-gal activity 

It is possible that the delay in the peak of the acute infection as determined by 

conventional methods compared to the marking of cells in the ROSA26R/Cre model may 

simply be due to a delay in lacZ expression leading to detectable β-gal activity. The timing 

of β-gal activity in ROSA26R mice is contingent upon sufficient expression of the eGFP/Cre 

fusion gene from HSV-1 following the infection of a cell, followed by recombination 

between the loxP sites in the mouse genome by eGFP/Cre and finally accumulation of 

sufficient β-gal protein to be detectable following X-gal staining. The Vero SUA cell line 

contains a similar loxP-flanked insert that prevents expression of β-gal before the 

provision of the Cre recombinase (Rinaldi et al., 1999). Therefore, the detection of 

expression of eGFP, which is directly under the control of the viral promoter, can be 

compared with β-gal activity from the Vero SUA cells, which is dependent upon Cre 

mediated recombination. 

The expression of eGFP and β-gal was not able to be directly compared within the same 

cell. While fluorogenic substrates do exist for β-gal, the most commonly used substrate 

fluorescein-di-β-D-galactopyranoside emits light in a similar region of the spectrum as 

eGFP (Nolan et al., 1988). An alternate substrate for β-gal, DDAO-galactosidase, which 

emits in the far red shifted region of the spectrum, was tested but was not retained well in 
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the cells and exhibited substantial non-specific staining (data not shown; Gong et al., 

2009).  

Therefore, semi-confluent Vero SUA cell monolayers were infected with HSV-1 KOS, HSV-1 

pC_eGC, HSV-1 pICP0_eGC, HSV-1 pICP6_eGC or HSV-1 pgB_eGC (MOI of 5), or were left 

uninfected. Following one hour absorption, the virus inoculum was replaced with fresh 

media (this was called 0 hours p.i.). At four hour intervals from 0 until 24 hours p.i., the 

monolayers were fixed and then photographed for expression of eGFP. The cells were then 

stained with X-gal and photographed for visualisation of β-gal activity. Expression of eGFP 

was detectable at four hours p.i. in cells infected with HSV-1 expressing eGFP/Cre under 

either the CMV IE promoter, or the immediate early ICP0 promoter (Figure 4-13). By 

contrast, in cells infected with HSV-1 expressing eGFP/Cre from an early promoter (ICP6) 

or late promoter (gB), eGFP expression was first detectable at eight hours p.i. In all cases, 

detectable β-gal expression was first evident from 12 hours after expression of eGFP. As 

previously reported, the longer it takes for eGFP/Cre to be expressed following infection, 

the fewer cells become β-gal+. This is probably attributable to virus induced host cell shut 

off and cell death prior to lacZ expression (Proença et al., 2008). However, these results 

are caveated by the biggest limitation of this experiment, which is that it was performed 

using a Vero cell-based culture system, as opposed to the infection of neurons within 

ROSA26R mice, and so may not faithfully model the ROSA26R/Cre system in vivo.  

Cre-mediated recombination is rapid, taking only a few minutes in the context of in vitro 

systems (Abremski and Hoess, 1985). Further, consistent with the results presented here, 

it has been shown that recombination frequency between loxP sites in a murine cell line 

paralleled the accumulation of Cre, peaking at 15 hours post-delivery (Sauer and 

Henderson, 1988). It is not possible to definitively determine the delay between the initial 

expression of cre and the detection of β-gal activity by X-gal staining within an infected cell 

within a HSV-1 infected ROSA26R mouse. However, it is highly unlikely that this 12 hour 

delay is solely responsible for the disparity between the peak of β-gal activity at nine days 

p.i. in ROSA26R mice infected with HSV-1 pC_eGC as compared to the peak in β-gal activity 

at four days p.i. observed in KOS6β-infected C57Bl/6 mice. 
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Figure 4-9. Photomicrographs of DRG from ROSA26R mice infected with HSV-1 

pICP6_eGC over time. Groups of ROSA26R mice were infected with 1×108 PFU/mL 

HSV-1 pICP6_eGC. At the indicated times mice were culled and the DRG (from spinal 

levels T5 to L1) were removed and processed for the detection of β-gal activity. 

Photomicrographs were taken of each DRG at 40× magnification (scale bar = 300 μm, as 

indicated on the top left image). The images of DRG from spinal levels T7 to T12 from 

an individual mouse are shown for each time point and are representative of three 

independent experiments (n = 13 – 14, refer to Figure 4-10). Some example β-gal+ cells 

are indicated by the red arrows. No β-gal+ cells were seen in spinal levels T5, T6, T7, 

T13 or L1. 
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Figure 4-10. Very few cells become marked during infection with HSV-1 

pICP6_eGC within ROSA26R mice. Groups of four or five ROSA26R mice were infected 

with 1×108 PFU/mL HSV-1 pICP6_eGC. At 5, 10, 20 or 40 days p.i. mice were culled and 

the DRG (from spinal levels T5 to L1) were removed and processed for the detection of 

β-gal activity. Both (A) the total number of β-gal+ cells per mouse and (B) the number of 

DRG per mouse containing at least one β-gal+ cell are shown. Each circle represents one 

mouse and the black bar represents the mean value for all mice at each time point. The 

results are pooled from three independent experiments (n = 13 – 14 per time point). A 

one way ANOVA was performed, but the means are not significantly different (p > 

0.05). 
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Figure 4-11. Photomicrographs of DRG from ROSA26R mice infected with HSV-1 

pgB_eGC over time. ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pgB_eGC. 

At the indicated times mice were culled and the DRG (from spinal levels T5 to L1) were 

removed and processed for the detection of β-gal activity. Photomicrographs were 

taken of each DRG at 40× magnification (scale bar = 300 μm, as indicated on the top left 

image). The images of DRG from spinal levels T7 to T12 from an individual mouse are 

shown for each time point, and are representative of five independent experiments (n = 

16 – 20, refer to Figure 4-12). Some example β-gal+ cells are indicated by the red 

arrows. No β-gal+ cells were detectable in spinal levels T5, T6, T13 or L1. 
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Figure 4-12. Accumulation of β-gal marked cells in ROSA26R mice infected with 

HSV-1 pgB_eGC throughout latency. Groups of two to six ROSA26R mice were 

infected with 1×108 PFU/mL HSV-1 pgB_eGC. At 5, 10, 20 or 40 days p.i. mice were 

culled and DRG (from spinal levels T5 to L1) were removed and processed for the 

detection of β-gal activity. Both (A) the total number of β-gal+ cells per mouse and (B) 

the number of DRG per mouse containing at least one β-gal+ cell are shown. Each circle 

represents one mouse and the black bar represents the mean value for all mice at each 

time point. The results are pooled from five independent experiments (n = 16 – 20 per 

time point). Statistical significance was determined by a one way ANOVA (p < 0.001) 

with Bonferroni’s post-test to make pairwise comparisons (*p < 0.05). 
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Figure 4-13. Detection of β-gal activity lags twelve hours behind expression of 

eGFP/Cre in Vero SUA cells. Semi-confluent Vero SUA cell monolayers (~8.2 × 104 

cells per well of a 24 well plate) were infected with HSV-1 KOS, HSV-1 pC_eGC, HSV-1 

pICP0_eGC, HSV-1 pICP6_eGC or HSV-1 pgB_eGC at an MOI of five. The cell monolayers 

were fixed at four hour intervals from 0 to 24 hours p.i. and examined for eGFP 

expression. The monolayers were then stained and examined for β-gal activity. 

Photomicrographs are shown taken at 400× magnification, with images showing a 

representative image of the same monolayer before and after staining to detect eGFP 

and β-gal expression, respectively (scale bar = 50 μm, shown on the top left image). 

Data are representative of two independent experiments. 
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4.3 Activity under HSV-1 promoters can give rise to protein 

expression during latency 

To date, there have been no published reports that find an accumulation of β-gal marked 

cells in ROSA26R mice that are infected with HSV-1 that expresses Cre from a lytic 

promoter. So, there is no evidence from the ROSA26R/Cre system indicating that lytic viral 

promoter activity could lead to protein production during latency (Proença et al., 2008; 

Proença et al., 2011). Notably, lytic viral promoters tested in this system include those that 

direct expression of key transactivator proteins, which may initiate gene expression 

leading to reactivation, including ICP4, ICP0 and VP16 (Cai et al., 1993; Halford et al., 2001; 

Thompson et al., 2009). The observation that β-gal marked neurons do not accumulate 

during latency in ROSA26R mice infected with a virus expressing Cre from the ICP0 

promoter was confirmed in Section 4.2.3. However, the increase in the number of β-gal+ 

cells in ROSA26R mice infected with HSV-1 pgB_eGC during days 20 and 40 p.i. (Figure 4-

12) suggested that expression from the gB promoter during latency may lead to low level 

protein expression. The difference between the mean number of β-gal+ cells per mouse on 

days 20 and 40 p.i. was statistically significant, although the low number of β-gal+ cells 

makes this result less convincing. Therefore, the number of β-gal+ cells was assessed at 

day 10, 21 and 100 p.i. to allow continued accumulation of gB promoter-marked cells 

during latency over a long timeframe. 

ROSA26R mice were infected with HSV-1 pgB_eGC and culled at days 10, 21 and 100 p.i., 

their DRG were removed and the number of β-gal+ cells was determined. The number of β-

gal marked cells detected on days 10 and 21 p.i. was not significantly different when 

compared to the previous experiment (Figure 4-11). The number of β-gal+ cells continued 

to rise throughout latency between days 21 and 100 p.i., with an almost three-fold average 

increase in the number of β-gal+ cells over this time (Figure 4-14A). There was also an 

increased number of DRG that contain at least one β-gal+ cell during this time (Figure 4-

14B). This increase is unlikely to be due to the spread of virus to previously uninfected 

neurons during latency, as it was shown in Section 4.2.1. that HSV-1 is able to spread to 

distal DRG by day 10 p.i.. Rather, the increase in the number of DRG that contain at least 

one β-gal+ cell probably reflects gB promoter activity in neurons that were infected during 

the course of the acute infection but did not become β-gal marked. So, even neurons that 

do not directly innervate the site of infection can experience gB promoter activity during 

latency. 

Next, β-gal activity in ROSA26R mice infected with HSV-1 pICP6_eGC was assessed. Groups 

of ROSA26R mice were infected with HSV-1 pICP6_eGC and culled at days 10, 20 and 100  



200 

 

Figure 4-14. Accumulation of β-gal marked cells in ROSA26R mice infected with 

HSV-1 pgB_eGC throughout latency. Groups of four to five ROSA26R mice were 

infected with 1×108 PFU/mL HSV-1 pgB_eGC. At 10, 21 or 100 days p.i. mice were 

culled and the DRG (from spinal levels T5 to L1) were removed and processed for the 

detection of β-gal activity. Both (A) the total number of β-gal+ cells per mouse and (B) 

the number of DRG per mouse containing at least one β-gal+ cell are shown. Each circle 

represents one mouse and the black bar represents the mean value for all mice at each 

time point. The results are pooled from three independent experiments (n = 14 – 15 

per time point). Statistical significance was determined by a one way ANOVA (p < 

0.001) with Bonferroni’s post-test to make pairwise comparisons (*p < 0.05). 
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p.i., their DRG were removed and the number of β-gal+ cells was determined. This virus 

also showed a significant increase in the number of β-gal+ cells between days 10 and 100 

p.i. (Figure 4-15A). Again, there was an increased number of DRG that contain at least a 

single β-gal+ cell during this time (Figure 4-15B). As for the accumulation of β-gal marked 

cells during infection of ROSA26R mice with HSV-1 pgB_eGC (Figure 4-14), this 

observation likely reflects activity under the ICP6 promoter in DRG that were infected 

during the acute infection but whose neurons do not directly innervate the site of 

infection.  

The increase in the number of β-gal+ cells in mice infected with either HSV-1 pICP6_eGC or 

HSV-1 pgB_eGC during latency may be a result of sporadic reactivation and resultant 

spread of virus when the ROSA26R/Cre system was employed. However, the failure to 

observe an accumulation of β-gal marked neurons during latency in ROSA26R mice 

infected with HSV-1 pICP0_eGC also argues against this possibility. This possibility did 

remain to be addressed. Therefore, ROSA26R mice were infected with HSV-1 pC_eGC, and 

mice were culled at 10, 20 and 100 dpi, when the expression of β-gal in DRG was assayed. 

There was an initial decline in the number of β-gal+ cells between 10 and 20 days p.i. 

(Figure 4-16) and the loss of infected neurons during the establishment of latency, 

consistent with that previously described (Section 4.2.1). However, latency itself was 

remarkably stable, with the number of β-gal+ cells remaining similar between 20 and 100 

days p.i. Further, the number of DRG that contain β-gal+ cells was similar between days 20 

and 100 p.i., suggesting there is little, if any, spread of virus during this time. 

It is possible that any increase in the number of β-gal marked cells due to the spread of 

virus to previously uninfected cells may be precisely balanced by the loss of β-gal+ cells 

due to reactivation. Based on the data presented in Figure 4-16, to theoretically observe a 

statistically significant net change in the size of the viral reservoir over the 80 days of 

latency measured, a minimum of at least 50 β-gal+ neurons must be lost, or approximately 

two β-gal+ neurons every three days. This places a limit on the ability of this system to 

detect reactivation and new infection, especially as reactivation probably occurs from only 

a few neurons. However, the failure to detect an increase in the number of β-gal marked 

cells in ROSA26R mice infected with HSV-1 pICP0_eGC indicates that there is not 

substantial reactivation and spread of virus in this system (refer to Section 4.2.3). So, it is 

reasonable to conclude that latency is stable in our mouse model and is comparable with 

other murine models of HSV-1 latency (Gebhardt and Halford, 2005; Laycock et al., 1991). 

Given this, there is likely gB and ICP6 promoter activity during latency, albeit at a low level 

or of a transient nature, which can lead to the expression of viral protein. 
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Figure 4-15. Following infection with HSV-1 pICP6_eGC, β-gal marked cells slowly 

accumulate throughout latency, indicating viral protein production. Groups of 

three or four ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pICP6_eGC. At 

10, 20 or 100 days p.i. mice were culled and the DRG (from spinal levels T5 to L1) were 

removed and processed for the detection of β-gal activity. Both (A) the total number of 

β-gal+ cells per mouse and (B) the number of DRG per mouse containing at least one β-

gal+ cell are shown. Each circle represents one mouse and the black bar represents the 

mean value for all mice at each time point (n = 10 – 11 per time point). The results are 

pooled from three independent experiments. Statistical significance was determined by 

a one way ANOVA (p < 0.05) with Bonferroni’s post-test to make pairwise comparisons 

(*p < 0.05). 
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Figure 4-16. There is no significant gain or loss of β-gal marked neurons after the 

establishment of latency, indicating latency in ROSA26R mice is stable. Groups of 

four or five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pC_eGC. At 10, 20 

or 100 days p.i. mice were culled and DRG (from spinal levels T5 to L1) were removed 

and processed for the detection of β-gal activity. Both (A) the total number of β-gal+ 

cells per mouse and (B) the number of DRG per mouse containing at least one β-gal+ 

cell are shown. Each circle represents one mouse and the black bar represents the 

mean value for all mice at each time point. The results are pooled from 3 independent 

experiments (n = 8 – 10 per time point). Statistical significance was determined by a 

one way ANOVA (p < 0.001) with Bonferroni’s post-test to make pairwise comparisons 

(*p < 0.05). 

Figure 4-3. A finer time course reveals that the peak in the accumulation of β-gal 

marked neurons in ROSA26R mice infected with HSV-1 pC_eGC is at 9 days p.i. 

Groups of three to five Gtrosa mice were infected with 1×108 PFU/mL HSV-1 pC_eGC. At 

3, 5, 7, 9, 11, 13 or 15 days p.i. mice were culled and innervating DRG (from spinal 

levels T5 to L1) removed and processed for determination of β-gal expression. Both (A) 

the total number of β-gal+ cells per mouse and (C) the number of DRG per mouse 

containing at least one β-gal+ cell are shown. Each circle represents one mouse and the 

black bar represents the mean value for all mice at each time point. The results are 

pooled from two independent experiments (n = 8 per time point). (B&D) Statistical 
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4.4 The expression of Cre under different HSV-1 promoters in 

vivo may not be well predicted by kinetic class 

Thus far, only a single representative promoter of each kinetic class was chosen for the 

examination of historical gene expression during the establishment and maintenance of 

latency. However, HSV-1 is a large virus with many genes within each kinetic class (Pellet 

and Roizman, 2013). Although there are consensus promoter elements that dictate 

expression, especially in epithelial cells, there are known differences in the regulatory 

control of genes within the same kinetic class (Homa et al., 1988; Honess and Roizman, 

1974; Pande et al., 1998; Sze and Herman, 1992). These differences remain largely 

unexplored in the context of in vivo infection models and, in particular, during latency. 

There are five immediate early genes, but only the activity of two immediate early gene 

promoters, namely ICP0 and ICP4, have been examined in the ROSA26R/Cre model (refer 

to Section 4.2.3; Proença et al., 2008; Proença et al., 2011). Additionally, two of the 

remaining immediate early genes, encoding ICP22 and ICP47, share promoter sequences 

(Barklie Clements et al., 1977; Gelman and Silverstein, 1987; Murchie and McGeoch, 1982). 

To further extend this study, a virus was used in which a gene encoding an eGFP/Cre 

protein was placed under the control of the ICP47/22 promoter at an ectopic locus (refer 

to Section 3.2.2.1). Groups of ROSA26R mice were infected with HSV-1 pICP47_eGC, and 

culled at various times p.i. and the number of β-gal+ cells per DRG determined (Figure 4-

17). A distinct trend in the number of β-gal+ cells was observed, with a substantial, 

significant increase in the number of β-gal+ cells seen between days five and 20 p.i. (Figure 

4-18A). This was associated with an increased number of DRG that contain at least one β-

gal+ cell between days 20 and 40 p.i. (Figure 4-18B), indicating activity of this promoter 

may occur in neurons that did not directly innervate the site of the initial skin infection. 

The accumulation of β-gal marked cells in ROSA26R mice infected with HSV-1 pICP47_eGC 

contrasts with the pattern observed when historical expression under the ICP0 promoter 

was observed in this model (Figure 4-8) and that previously observed when Proença and 

colleagues (2008; 2011) used the ICP0 and ICP4 promoters in this system. It more closely 

resembles the trend in the marking of neurons in ROSA26R mice when Cre is expressed 

from the LAT promoter published by Proença and colleagues (2008). Given this 

unexpected finding, the activity of the ICP47/22 promoter during latency will be explored 

further in Chapter 5. 
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4.5 Expression of Cre under the LAT promoter in ROSA26R mice 

leads to the β-gal marking of a substantial population of cells 

It was shown that the activity of the ICP47 promoter leads to the continued marking of a 

reasonable sized population of cells during latency. This surprising trend is similar to that 

reported by Proença and colleagues (2008), for a virus designed to express Cre under the 

LAT promoter, named LAT Cre. However, LAT Cre was constructed on a different genetic 

background, SC16, and a different route of infection was used. Therefore, a virus was 

constructed using the KOS strain of virus which contains an eGFP/Cre fusion gene under 

the control of an IRES inserted into the LAT locus (refer to Section 3.4). 

As would be expected, it was previously shown that there was no expression of eGFP from 

HSV-1 pLAT_eGC following infection of Vero cells (refer to Section 3.5), but this does not 

verify that eGFP expression will be observed during latency in vivo. Therefore, C57Bl/6 

mice were infected with HSV-1 pLAT_eGC. There mice were culled at either four or 30 days 

p.i. to assess expression of eGFP within the DRG during either acute or latent infection, 

respectively (Figure 4-19). A small population of eGFP+ cells was detectable at four days 

p.i., with clear nuclear localisation of eGFP (Figure 4-19B). The expression of eGFP was 

detected in DRG of multiple spinal levels in each mouse (Figure 4-19D). Further, there was 

a similar number of eGFP+ cells detectable during latency and the acute infection (Figure 

4-19C). This confirms that expression of the eGFP/Cre cassette from an IRES inserted into 

the LAT locus in HSV-1 pLAT_eGC is possible. 

To test if there was historical expression under the LAT promoter in ROSA26R mice, 

groups of mice were infected with HSV-1 pLAT_eGC. Mice were culled at various times p.i., 

and the number of β-gal+ cells in the DRG was determined (Figure 4-20). As observed by 

Proença and colleagues (2008), the initial population of cells that becomes β-gal+ during 

the acute infection (at five and 10 days p.i.) was substantial, and comparable to that of 

ROSA26R mice infected with HSV-1 pC_eGC (Figure 4-2, and 4-21). The spread of virus to 

distal DRG was greater, with an average of nine DRG containing at least one β-gal marked 

cell on day 10 p.i., as compared to HSV-1 pC_eGC where an average of seven DRG contain 

at least one β-gal marked cell. However, the population of β-gal+ cells continued to 

increase until 20 days p.i., by which time latency should be largely established. The 

population of β-gal marked cells remained largely stable throughout latency. This 

observation was unexpected, as it implies that the population of β-gal marked cells in 

ROSA26R mice infected with HSV-1 pLAT_eGC is more than twice that of ROSA26R mice 

infected with HSV-1 pC_eGC. Given that results presented in this chapter indicate that the 

ROSA26R/Cre system is more sensitive to the activity under viral promoters than a  
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Figure 4-17. Representative photomicrographs of DRG from ROSA26R mice 

infected with HSV-1 pICP47_eGC over time. ROSA26R mice were infected with 1×108 

PFU/mL HSV-1 pICP47_eGC. At the indicated times mice were culled and the DRG (from 

spinal levels T5 to L1) were removed and processed for the detection of β-gal activity. 

Photomicrographs were taken of each DRG at 40× magnification (scale bar = 300 μm, as 

indicated on the top left image). The images of DRG from spinal levels T7 to T12 from 

an individual mouse are shown for each time point, and are representative of three 

independent experiments (n = 11, refer to Figure 4-18). β-gal+ cells were undetectable 

in spinal levels T5, T6, T7, or L1. 
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Figure 4-18. Activity under the ICP47 promoter leading to viral protein 

production occurs during the establishment of latency and throughout latency. 

Groups of two to five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 

pICP47_eGC. At 5, 10, 20 or 40 days p.i. mice were culled and the DRG (from spinal 

levels L1 to T5) were removed and processed for the detection of β-gal activity. Both 

(A) the total number of β-gal+ cells per mouse and (C) the number of DRG per mouse 

containing at least one β-gal+ cell are shown. Each circle represents one mouse and the 

black bar represents the mean value for all mice at each time point. The results are 

pooled from three independent experiments (n = 11 per time point). (B&D) Statistical 

significance was determined by a one way ANOVA (p < 0.001) with Bonferroni’s post-

test to make pairwise comparisons, with key statistical differences indicated on (A) and 

(C), where * represents that p < 0.05. 
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T8 

T9 

T10 

Day 4 p.i. Day 30 p.i. 

Figure 4-19. Expression of eGFP in C57Bl/6 mice infected with HSV-1 pLAT_eGC. 

Groups of four C57Bl/6 mice were infected with 1×108 PFU/mL HSV-1 pLAT_eGC. At 4 

or 30 days p.i. mice were culled and the DRG (from spinal levels T5 to L1) were 

removed and processed for the detection of eGFP expression. (A) Photomicrographs 

are representative of a single mouse taken at 50× magnification (scale bar = 250 μm, as 

indicated on top left image), with photos showing spinal levels T10 to T8, with eGFP+ 

cells still detectable in the remaining DRG. (B) A magnified view of the red box at 100× 

magnification, where the red arrows indicate the localisation of eGFP/Cre (scale bar = 

300 μm). Both (C) the total number of eGFP+ cells per mouse and (D) the number of 

DRG per mouse containing at least one eGFP+ cell are shown. Each circle represents one 

mouse and the black bar represents the mean value for all mice at each time point. The 

results are pooled from two independent experiments. An unpaired t test with Welch’s 

correction was performed but no statistically significant difference between means was 

found (p > 0.05). 
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traditional plaque assay, it is highly likely that this virus has an undesired secondary site 

mutation that has resulted in a subtle alteration in its growth or pathogenesis in vivo. 

Alternatively, the LAT region is transcriptionally complex (refer to Figure 3-12), and the 

insertion of this expression cassette may have affected gene expression from this region. 

Therefore, to make any conclusions based on this data, it is important that a revertant 

virus is constructed to begin to resolve these concerns. 

 

4.6 Discussion 

This chapter began with a historical analysis of HSV-1 infection using ROSA26R mice 

infected with HSV-1 pC_eGC to reveal the entire population of live infected cells. 

Surprisingly, continued spread of virus beyond the peak of infection was observed. By 

contrast, the presence of infectious virus peaks at four days p.i., as does the expression of 

lacZ from KOS6β-infected mice. Therefore, the maximal viral load occurs much earlier 

during the acute infection (these results are summarised in Figure 4-22), consistent with 

previous reports using similar models of HSV-1 infection (Luker et al., 2002; Sawtell et al., 

1998; Sedarati et al., 1989; Simmons and Nash, 1984; Speck and Simmons, 1998; Van Lint 

et al., 2004). HSV-1 is a highly cytolytic virus, and during the peak of viral activity it is 

likely that many neurons are infected and are dying, so would not undergo lacZ expression 

in the ROSA26R/Cre mouse model. Therefore, it is likely that the peak in the historical β-

gal marking of neurons in ROSA26R/Cre mice at day 10 p.i. compared to the maximal virus 

load at day four p.i. can be explained by a bias towards the establishment of a latent 

infection in cells that first receive viral genomes later in infection (after day five p.i.). Such 

an explanation could also account for the much slower decline in viral genome copy 

number during the resolution of the acute infection (Chen et al., 2000; Wakim et al., 

2008b), when compared to infectious virus (refer to Section 4.2.2; Van Lint et al., 2004). 

The viral genome copy number reflects acutely infected neurons, including those that are 

dying, and those in which latency has been established, while the marking of cells in the 

ROSA26R/Cre mouse model likely does not reflect viral activity during acute infection 

very well. The net result of the resolution of the acute infection is likely to be the loss of 

viral genomes due to lytic infection, but later times p.i. this may be partially balanced by 

the slow spread of virus and the establishment of a latent infection in previously 

uninfected neurons. The establishment phase of latency occurs in the context of a rapidly 

developing adaptive immune response, with the development of a strong CD8+ T cell  
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Figure 4-20. Photomicrographs of DRG from ROSA26R mice infected with HSV-1 

pLAT_eGC over time. Groups of ROSA26R mice were infected with 1×108 PFU/mL 

HSV-1 pLAT_eGC. At the indicated times mice were culled and the DRG (from spinal 

levels T5 to L1) were removed and processed for the detection of β-gal activity (see 

Figure 4-21). Photomicrographs were taken of each DRG at 40× magnification (scale 

bar = 300 μm, as indicated on the top left image). The images of DRG from spinal levels 

T7 to T13 from an individual mouse are shown for each time point and are 

representative of three independent experiments (n = 8, refer to Figure 4-21). β-gal+ 

cells were still detectable in spinal levels L1, T6 and T5 for mice on days 10, 20 and 40 

p.i. 
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Figure 4-21. Accumulation of β-gal marked cells indicates continued activity 

under the LAT promoter during latency. Groups of three to five ROSA26R mice were 

infected with 1×108 PFU/mL HSV-1 pLAT_eGC. At 5, 10, 20, 40 or 100 days p.i. mice 

were culled and the DRG (from spinal levels T5 to L1) were removed and processed for 

the detection of β-gal activity. Both (A) the total number of β-gal+ cells per mouse and 

(C) the number of DRG per mouse containing at least one β-gal+ cell are shown. Each 

circle represents one mouse and the black bar represents the mean value for all mice at 

each time point. The results are pooled from three independent experiments (n = 8 for 

each time point). (B&D) Statistical significance was determined by a one way ANOVA (p 

< 0.01) with Dunn’s post-test to make pairwise comparisons, with key statistical 

differences indicated on (A) and (C) (*p < 0.05). 
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Figure 4-22. Summary of trends in historical marking of neurons in ROSA26R 

mice during acute infection compared to conventional means of tracking the 

acute HSV-1 infection. The mean titre of virus within the DRG of ROSA26R mice 

infected with HSV-1 pC_eGC from Figure 4-4 is shown in red, and plotted on the X-axis 

versus the Y-axis on the left hand side. Reporter gene activity throughout the acute 

infection is shown in purple as the mean number of β-gal+ cells in KOS6β infected 

C57Bl/6 mice. The means of data from Figures 4-2, 4-3 and 4-16 is shown in blue, 

indicating the accumulation of β-gal marked cells in ROSA26R mice infected with HSV-1 

pC_eGC over time. Finally, the means of the data from Figure 4-8 is shown in yellow 

indicating the accumulation of β-gal marked cells in ROSA26R mice infected with HSV-1 

pICP0_eGC over time. 
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response that peaks at day seven p.i. (Coles et al., 2002), and will be discussed in more 

detail in Chapter 6. 

The observation made using the ROSA26R/Cre system that the spread of virus continues 

beyond the peak of the acute infection at day four p.i. was not restricted to those mice 

infected with HSV-1 pC_eGC. Rather, it also extends to include historical marking of 

neurons by Cre expressed from bona fide HSV-1 lytic promoters. This is exemplified by 

ROSA26R mice infected with HSV-1 pICP0_eGC, with the peak in the number of β-gal+ cells 

at day 10 p.i. Both HSV-1 pICP47_eGC and HSV-1 pICP0_eGC were able to mark a 

substantial population of neurons in acutely infected ROSA26R mice. These observations 

are consistent with those observations by Proença and colleagues when other viruses that 

express cre from an immediate early promoter were employed in the ROSA26R mouse 

model (2008; 2011). Even though the number of β-gal+ cells detected is clearly different, in 

both cases about one third of all latently infected cells likely experienced prior ICP0 

expression prior to the establishment of latency (Proença et al., 2008). The simplistic, 

phage λ-like model of latency implies that cells experiencing lytic gene expression 

inevitably die, but the β-gal marking of cells in ROSA26R mice infected with HSV-1 

pICP0_eGC or HSV-1 pICP47_eGC is more consistent with other studies suggesting latency 

establishment can be preceded by immediate gene expression (Kosz-Vnenchak et al., 

1993; Kramer et al., 1998; Margolis et al., 1992; Nichol et al., 1996; Speck and Simmons, 

1991; Steiner et al., 1990; Valyi-Nagy et al., 1991).  

It is likely that the outcome for those cells in which the full cascade of lytic gene expression 

is completed is death (Pellet and Roizman, 2013). This likely accounts for why very few 

cells became β-gal marked following expression of cre under the early ICP6 or leaky late 

gB promoters. These results are consistent with similar observations made by Proença 

and colleagues (2008; 2011) when either the early tk, or late gC or VP16 promoters were 

used to drive expression of cre. However, there is a large, vital population of neurons 

during the acute infection that experience expression of the early and late genes required 

for viral DNA replication and the production of infectious virus to drive the spread of virus 

between about days two and five p.i. (Kramer et al., 1998; Pellet and Roizman, 2013; Speck 

and Simmons, 1991). There are several possibilities to explain the failure to detect large 

numbers of β-gal+ cells in ROSA26R mice infected with either HSV-1 pICP6_eGC or HSV-1 

pgB_eGC. Cells may fail to express sufficient Cre protein before viral shutdown of the host 

cell transcription occurs. So, the modification to the genome necessary for the expression 

of β-gal does not occur, even if the cell survives (Laurent et al., 1998; Smiley, 2004). 

Alternately, neurons may survive expression of early or late genes prior to establishment 

of latency, but not express sufficient Cre or β-gal for the detection of β-gal activity, 
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although this is inconsistent with models of HSV-1 latency establishment. Finally, and 

most likely, latency is not established in neurons which experience early or late gene 

expression and so they die, likely before they are able to express sufficient β-gal to be 

detected by X-gal staining (Proença et al., 2008; Proença et al., 2011). This is consistent 

with most models of HSV-1 latency establishment in neurons (Kosz-Vnenchak et al., 1993; 

Kramer et al., 1998; Margolis et al., 1992; Nichol et al., 1996; Speck and Simmons, 1991; 

Steiner et al., 1990; Valyi-Nagy et al., 1991). One way to investigate this further would be 

to look for expression of eGFP in ROSA26R mice infected with HSV-1 expressing eGFP/Cre 

from a lytic gene promoter, which would reflect current gene expression, even in cells in 

which a lytic infection is established. This could then be compared with β-gal expression in 

the same sample, ideally within the same cell, but there are currently no fluorescent 

substrates for β-gal available that can be used in combination with eGFP detection. 

Overall, it is clear that the ROSA26R/Cre mouse model will fail to reveal the considerable 

population of neurons that undergo a lytic infection leading to cell death early during 

infection and account for the bulk viral load during the acute infection. 

There have been some reports that describe the detection of a low level of virus activity 

beyond day seven p.i. In this thesis, β-gal expression was detectable in a small population 

of cells until 16 days p.i. in C57Bl/6 mice infected with KOS6β (refer to Section 4.2.2). 

Unfortunately, the β-gal protein is extremely stable, a limitation when monitoring viral 

gene expression over time (Margolis et al., 1993). However, using immunohistochemistry 

with a polyclonal HSV-1 antibody to study gene expression in the TG of HSV-1 infected 

mice, Shimeld and colleagues (1995) were able to detect the presence of viral antigen until 

day 10 p.i. Using a similar method, Sawtell (2003) was also able to detect antigen in DRG 

from ocularly infected mice on days nine and 17 p.i. Further, when examining the viral 

transcript copy number relative to host RNA levels, Zhou and colleagues (2013) found that 

ICP27, TK and VP16 transcripts were detectable at similar levels or even higher on day 

seven compared to day three p.i. Further, although infectious virus is not usually reliably 

detected beyond day seven p.i. in murine models of HSV-1 infection (Sedarati et al., 1989), 

Sawtell (2003) was able to detect low levels of infectious virus in DRG in a subset of 

ocularly infected mice on both days nine and 17 p.i., although not day 14 p.i. There are also 

multiple reports of low level detection of infectious virus as determined by plaque assay 

on infected mice on day eight or nine p.i., but in this thesis infectious virus could not be 

detected at this time (refer to Figure 4-4; Ramachandran et al., 2008; Sawtell et al., 1998; 

Steiner et al., 1989; Thompson et al., 1986). In summary, there are multiple lines of 

evidence that indicate viral activity beyond the peak of the acute infection, but it is always 

at an exceptionally low level. This is consistent with the peak of historical marking of 
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neurons in the ROSA26R/Cre mouse system resulting from a decrease in the intensity of 

infected cell death as a result of lytic infection, rather than an increase in the number of 

neurons becoming infected at later times p.i.  

The biological relevance of continued viral activity beyond day seven p.i. and during the 

establishment of latency is most clearly demonstrated by the increase in the number of 

DRG that contain β-gal marked cells between day five and 10 p.i. in ROSA26R mice infected 

with HSV-1 pC_eGC. Since β-gal activity can be detected in distal DRG that do not directly 

innervate the site of infection during latency (at 100 days p.i.; see Figure 4-16), the 

increased spread of virus between days five and 10 p.i. likely results in an increase in the 

number of neurons that harbour latent HSV-1. Further, the increased spread of virus to 

distal DRG in ROSA26R mice infected with HSV-1 pICP0_eGC, HSV-1 pICP47_eGC or HSV-1 

pgB_eGC indicates that lytic promoter expression can occur in those neurons that do not 

directly innervate the site of infection. Speck and Simmons (1991) have previously shown 

productive infection, characterised by the presence of infectious virus during the acute 

infection and viral antigen, was restricted to the ganglia that innervate the site of infection, 

namely T6 to L1. By contrast, they found that latent infection is much more widespread, as 

assessed by the presence of LAT+ neurons and the retrieval of virus following reactivation 

from ganglia from spinal levels T6 to L1. Given their methods were insensitive to low level 

or transient expression of viral proteins or transcripts (Speck and Simmons, 1991), their 

results are consistent with those presented in this thesis. Further, the DRG that directly 

innervate the site of infection had relatively more copies of viral DNA per LAT+ cell, 

compared to those DRG that were distal to the site of infection (Simmons et al., 1992). 

Therefore, there is less amplification of DNA during the productive phase of infection in 

the DRG that do not directly innervate the site of infection. This is consistent with the 

findings in this thesis that virus spreads to more distal DRG at a time when productive 

infection is limited. While there is a caveat – namely, that the analysis of whole ganglia can 

mask variability between individually infected cells – the extent of lytic infection and entry 

into latency differs with direct innervation of the site of infection. 

It is not entirely clear how the virus spreads to the DRG that do not directly innervate the 

site of infection. In the flank zosteriform model of HSV-1 infection, the virus spreads from 

the site of infection in the skin to the DRG. Further spread occurs in the PNS, allowing the 

virus to reach axons that do not directly innervate the inoculation site, but belong to the 

same dermatome. The overlapping nature of the dermatomes facilitates virus spread 

across different spinal levels to a certain extent, with neurons from thoracic levels T8 and 

T12 likely innervating the site of infection above T10 (Speck and Simmons, 1991). 

However, the spread of virus to distal DRG between days five and 10 p.i. occurs when 
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infectious virus appears absent from the skin or DRG (refer to Section 4.2.2). Therefore, an 

alternative explanation is that at later times p.i. virus transmission may occur in an 

anatomical structure other than the DRG or skin. The dorsal horn of the spinal cord is 

organised into overlapping cell columns that receive inputs from DRG. The transmission of 

virus through the cell column may lead to transneuronal spread of virus to the sensory 

neurons of DRG that enter and terminate at other segmental levels (Smith et al., 2000). 

This is believed to account for the detection of latently infected neurons at spinal levels 

distal to the site of primary infection (Lachmann et al., 1999; Speck and Simmons, 1991), 

and likely occurs at later times after infection (beyond day five p.i.). It has been shown that 

the neurovirulent HSV-1 strain SC16 can pass trans-synaptically in the spinal cord using a 

CMV IE-lacZ reporter, which labels motor neurons that do not connect with the site of skin 

infection (Smith et al., 2000). Further, there is a similar level of detectable viral genomes 

relative to cellular DNA in the spinal cord and DRG following footpad inoculation of guinea 

pigs with HSV-1 strain 17 (Ohashi et al., 2011). However, the spread of HSV-1 to the CNS, 

including the spinal cord, is believed to occur only in mice infected with the more 

neurovirulent HSV-1 strains, while the strain of HSV-1 used in this thesis, KOS, is poorly 

neurovirulent (Blyth et al., 1984; Thompson et al., 1986). Following footpad inoculation 

with HSV-1 KOS, infectious virus has been detected in the feet, sciatic nerve trunk, and 

lumbosacral ganglia. KOS can be detected in the CNS, but this is limited to the detection of 

small amounts of virus in the spinal cord that is cleared before day four p.i. (Thompson et 

al., 1986). Although traditional plaques assays can be extremely sensitive, stochastic 

variation means that they may not be able to detect low levels of infectious virus reliably 

(Margolis et al., 2007a). Therefore, virus spread within the spinal cord is the most 

probable explanation for the detection of β-gal marked cells in distal DRG. 

Not all immediate early promoters used in this thesis resulted in a similar trend in 

historical expression in ROSA26R mice. When the ICP47 promoter was used to regulate 

the expression of cre in ROSA26R mice, a substantial population of cells became marked 

during the course of the acute infection. A surprising and novel finding was that there was 

a more than threefold increase in the number of β-gal+ cells during the establishment 

phase of latency, and continued accumulation of marked β-gal+ cells throughout latency. As 

previously described, this promoter is found in the inverted US genomic repeats and so a 

similar promoter controls expression of both the IE genes US1 (encoding ICP22) and US12 

(encoding ICP47; Barklie Clements et al., 1977; Gelman and Silverstein, 1987; Murchie and 

McGeoch, 1982). The possible role that ICP47 may play in the establishment of latency will 

be investigated in greater detail in Chapter 5. 
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Like ICP47, the multifunctional ICP22 protein has received relatively little attention 

compared to the other immediate early proteins. ICP22 was initially identified as a viral 

transactivator for some late genes (Bowman et al., 2009; Long et al., 1999; Rice et al., 

1995; Sears et al., 1985). It is not considered essential for virus growth in vitro but studies 

using ICP22 mutant viruses have revealed a replication defect in certain cell lines and 

mouse models (Orlando et al., 2006b; Sears et al., 1985). ICP22 may regulate late viral 

gene expression by altering cyclin dependent kinase 1, a critical cell cycle factor, and can 

also modulate neurovirulence (Advani et al., 2000b; Orlando et al., 2006b; Poffenberger et 

al., 1994; Sears et al., 1985). ICP22 is also important for regulating host cell functions, such 

as regulating phosphorylation of RNA polymerase II, which has been hypothesised to 

suppress transcription of host genes (Bowman et al., 2009; Fraser and Rice, 2005; Rice et 

al., 1995). It can also cause a relocalisation of host cell chaperones and can change the 

expression of key cell cycle regulatory proteins (Advani et al., 2000a; Bastian et al., 2010; 

Orlando et al., 2006a). Mutant viruses lacking ICP22 expression are deficient for 

reactivation, but this is likely to be caused by a failure to establish wildtype levels of 

latency due to their replication defect (Orlando et al., 2006b; Poffenberger et al., 1994; 

Sears et al., 1985). It has been suggested that ICP22 may play an important role in the 

establishment of latency by repressing viral gene transcription shortly after the infection 

of primary neurons (Bowman et al., 2009). Therefore, it is possible that this accumulation 

of β-gal+ cells during the establishment of latency may reflect ICP22 expression that serves 

to repress viral gene expression and prevent reactivation events, but as yet there is little 

evidence to support this. Given the limited characterisation of the role of ICP22 in vivo, a 

re-examination of the phenotype of ICP22 mutants, potentially in conjunction with a 

highly sensitive means of determining the extent of the establishment of latency like the 

ROSA26R/Cre mouse model, would be advantageous to further illuminate the role of this 

protein in HSV-1 infection. 

The similarity in the number of β-gal+ cells on days 20, 40 and 100 days p.i. in ROSA26R 

mice infected with HSV-1 pC_eGC and HSV-1 pICP0_eGC suggests that, unless precisely 

balanced, cells are not being lost during latency, or alternatively, the size of the latent 

reservoir is not increasing. Therefore, the latent state is extremely stable in this model, 

and provides further evidence supporting the consensus that spontaneous reactivation 

does not generally occur in mice (Gebhardt and Halford, 2005; Laycock et al., 1991). 

However, there was a gradual accumulation of β-gal marked cells in ROSA26R mice 

infected with HSV-1 pICP6_eGC or HSV-1 pgB_eGC over the course of latency, suggesting 

that expression under these promoters leading to protein production occurs. At face value, 

this activity may be attributable to low level spontaneous reactivation, which has been 
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described previously (Margolis et al., 2007a; Sawtell, 2003; Shimeld et al., 1990; Tullo et 

al., 1982; Willey et al., 1984). Studies of spontaneous reactivation, as evidenced by the 

shedding of virus in the tear film of rabbits latently infected with HSV-1 McKrae, revealed 

that reactivation does not alter the quantity of DNA and expression of LAT in the 

trigeminal ganglia as measured over 360 days (Hill et al., 1996a). Further, studies using in 

vivo reactivation models, such as transient hyperthermia or UV irradiation of latently 

infected mice, suggest that very little infectious virus is produced in the ganglia following 

reactivation (Fawl and Roizman, 1993; Sawtell, 1998; Shimeld et al., 1996a; Shimomura et 

al., 1985). Therefore, reactivation likely originates from a very small population of 

neurons, and has little impact on the latent reservoir of virus (Bloom et al., 1994; Sawtell, 

2003; Sawtell and Thompson, 1992b; Shimeld et al., 1996b). In addition, the general 

consensus is that reactivation does not lead to replication and spread of virus to large 

populations of previously uninfected neurons (Wagner and Bloom, 1997). Finally, the 

number of β-gal marked neurons did not accumulate in ROSA26R mice infected with HSV-

1 pICP0_eGC. Taken together, these considerations suggest that any accumulation of β-gal 

marked neurons in the ROSA26R/Cre mouse model infected with HSV-1 pICP6_eGC or 

HSV-1 pgB_eGC is unlikely to reflect spontaneous reactivation leading to the production of 

infectious virus. As the expression of β-gal in ROSA26R mice is dependent on the activity 

of functional Cre protein, HSV-1 lytic promoter activity can lead to protein production 

during latency, albeit at likely at very low levels and/or sporadically in very few cells.  

The expression of viral protein during latency is not unprecedented, as there have been at 

least three reports of the detection of HSV-1 proteins by ISH with polyclonal HSV-1 

antisera, and one report of ICP4 expression during latency in mice (Feldman et al., 2002; 

Green et al., 1981; Margolis et al., 2007a; Sawtell, 2003). Further, there has been a slow 

accumulation of reports over the last few decades that suggest that lytic gene transcripts, 

namely transcripts for the ICP4, TK and gC proteins, may be synthesised occasionally 

during latency as detected using conventional methods like ISH or RT-PCR. However, the 

detection of ICP6 transcripts has not been attempted (Chen et al., 2002a; Chen et al., 1997; 

Feldman et al., 2002; Kramer and Coen, 1995; Kramer et al., 1998; Ma et al., 2014; Pesola 

et al., 2005; Tal-Singer et al., 1997). Further, Derfuss and colleagues (2007) failed to detect 

gB transcripts by RT-qPCR on single cells isolated by LCM from latently infected human 

trigeminal ganglia. Despite this, other studies have failed to detect any accumulation of β-

gal+ cells in ROSA26R mice infected with viruses where Cre is expressed from the tk or gC 

promoters (Proença et al., 2008; Proença et al., 2011). This argues that the presence of 

detectable transcripts by ISH does not correlate with the accumulation of β-gal marked 

neurons in latently infected ROSA26R mice. Further, Ma and colleagues (2014) used the 
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ROSA-YFP mice, which are analogous to the ROSA26R mice used in this thesis, infected 

with a virus expressing cre under the CMV IE promoter to identify every cell latently 

infected with HSV-1, and combined this with LCM and single-cell qRT-PCR to assess viral 

gene transcription during latency. They showed that there is low level transcription of 

HSV-1 lytic genes in two thirds of latently infected cells, although they did not quantify 

transcript levels within individual cells. Cre mediated recombination is correlated with 

promoter strength, so this accumulation of β-gal+ cells may simply reflect the amount of gB 

or ICP6 transcripts generated within the latently infected cell (Araki et al., 1997; 

Pasparakis, 2007). Therefore, we suggest that these results presented in this thesis reflect 

the choice of viral promoters used. This is confirmed by the overall similarity in the 

pattern of accumulation of β-gal marked cells in ROSA26R mice infected with HSV-1 

pICP0_eGC (refer to Section 4.2.3), with that of the trend observed by Proença and 

colleagues (2008) when they employed their virus ICP0 Cre in the ROSA26R model. 

The results presented in this chapter provide support for the argument that the retention 

and activation of CD8+ T cells means that viral antigen, and more specifically gB protein, is 

present in latently infected mice (Decman et al., 2005a; Divito et al., 2006). The protein gB 

includes an immunodominant epitope that is recognised by more than 50% of CD8+ T cells 

during the acute infection, as well as those retained within the DRG of C57Bl/6 mice 

during latency (Khanna et al., 2003; Sheridan et al., 2006; St. Leger et al., 2013; St. Leger et 

al., 2011). ICP6 also encodes a number of subdominant epitopes that are recognised by 

CD8+ T cells, although unlike gB-specific CD8+ T cells retained in the DRG, the ICP6-specific 

CD8+ cells seem to lose functionality during latency as shown by IFN-γ production (Frank 

et al., 2010; Khanna et al., 2003; St. Leger et al., 2013; St. Leger et al., 2011). CD8+ TRM cells 

in the DRG, but not the skin, show signs of continuous antigen stimulation, such as the 

detection of gzmB (Gebhardt et al., 2009; Khanna et al., 2003; Mintern et al., 2007). 

Further, van Lint and colleagues (2005) found that the detection of gzmB within gB498-

specific CD8+ T cells during latency is dependent upon antigen presentation by cells of the 

parenchyma, most likely neurons. The findings presented in this thesis provide the first 

virological evidence that protein can be produced from the gB promoter during latency. 

Although this antigen is probably expressed at very low levels and sporadically, CD8+ T 

cells are exquisitely sensitive to antigen and are able to recognize as few as one 

peptide:MHC-I complex (Purbhoo et al., 2004). Therefore, the low level, likely sporadic, 

expression of gB antigen is likely to be of a sufficient level to explain the activation of CD8+ 

T cells. It has been suggested that the primary function of these CD8+ T cells is to prevent 

reactivation, possibly through an IFN-γ dependent mechanism (Campbell et al., 1984). 

This has mainly been demonstrated using reactivated in vitro cultures of latently infected 
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TG (Carr et al., 2009; Decman et al., 2005b; Khanna et al., 2003; Liu et al., 2000). Further, 

Ramachandran and colleagues (2010) examined the effect of delaying the expression of gB 

on the CD8+ T cell response to HSV-1 by placing gB under the control of the gC promoter. 

This virus had a replication defect in vivo, but by using a low dose for infection with the 

control rescue virus in which gB is expressed under its native promoter to establish a 

similar latent viral load, they were able to show that the CD8+ T cell response in the lymph 

nodes is similar, indicating that priming was not impaired. Interestingly, there ws a 

significant reduction in the number of activated (gzmB+) CD8+ T cells within the DRG 

during latency. Proença and colleagues (2008) have shown that gC promoter activity does 

not result in an accumulation of β-gal marked during latency in ROSA26R mice, unlike that 

observed for the gB promoter in this chapter. It can be speculated that the low level gB 

promoter activity observed in the ROSA26R system is important for the retention of 

activated gB-specific CD8+ T cells within the ganglia. These CD8+ T cells may engage 

neurons expressing significant levels of ICP6 or gB, suppressing reactivation and 

subsequent cell death, which serves to increase the population of cells in ROSA26R mice 

that become β-gal marked during latency. 

One disadvantage of this system is that it is impossible to reveal subsequent promoter 

activity within an already infected, β-gal marked cell. As such, it is possible that promoter 

activity as inferred from the accumulation of β-gal marked cells in the ROSA26R/Cre 

mouse system is underestimated, and may explain why there is no accumulation of β-gal 

marked cells during latency in ROSA26R mice infected with HSV-1 pICP0_eGC. However, 

the accumulation of β-gal marked cells during latency in ROSA26R mice infected with HSV-

1 pICP6_eGC or HSV-1 pgB_eGC, as well as the comparable virus that utilises an immediate 

early promoter, HSV-1 pICP47_eGC (refer to Section 5.2.1), argues against this. None-the-

less, an alternative strategy to overcome this would be to use an inducible Cre system. In 

these systems, Cre is been fused to mutated hormone-binding domains of the estrogen 

receptor (CreER; Metzger et al., 1995). CreER is inactive until the synthetic ligand 4-

hydroxytamoxifen (OHT) is provided. Then, CreER is able to localise to the nucleus and 

mediate loxP recombination in ROSA26R mice, allowing for expression of β-gal (Feil et al., 

1996; Feil et al., 1997; Metzger et al., 1995; Soriano, 1999). CreER could be placed under 

the control of the ICP0 promoter expressed from HSV-1, and if OHT is not administered 

until after the resolution of the acute infection, then the ICP0 promoter-dependent 

marking of cells during latency can be dissected from that which occurs during the 

primary lytic infection.  

It is often assumed that genes within the same class of viral gene expression will be 

expressed with similar kinetics, but this is likely to be an oversimplification (Harkness et 
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al., 2014). For example, transcripts accumulate to different levels based on infection in 

vitro using MRC5 and HeLa cells as well as primary adult TG neuronal cultures (Harkness 

et al., 2014; Stingley et al., 2000). It has even been suggested that the early and late classes 

of viral gene expression should not really be considered to be distinct as in reality they 

exist as a biological continuum. In particular, the distinction between different classes of 

viral genes may not be clear during latency due to the almost global suppression of viral 

lytic gene expression (Pellet and Roizman, 2013). The suppression of lytic viral gene 

expression is principally mediated by the prevention of transcription through chromatin 

control of the genome, with some contribution to regulation by miRNAs and other LAT 

encoded RNAs (Knipe and Cliffe, 2008; Kramer et al., 2011; Peng et al., 2008; Shen et al., 

2009; Umbach et al., 2008). The genes encoding ICP6 and gB are located in the UL region of 

the genome that is broadly associated with repressive heterochromatin, with metH3K9 

and metH3K27, although this exists in balance across the genome (Cliffe et al., 2009; 

Deshmane and Fraser, 1989; Kwiatkowski et al., 2009; Wang et al., 2005b). It is also 

possible that miRNAs are able to prevent the expression of specific viral proteins. For 

example, the miR-H2-3p is expressed in latency and is able to mediate a reduction of ICP0 

protein, but not transcripts (Umbach et al., 2008). However, to date, no miRNA has been 

identified that is able to inhibit ICP6 or gB expression (Cui et al., 2006; Jurak et al., 2010; 

Munson and Burch, 2012; Umbach et al., 2009). It is also probable that other mammalian 

post-transcriptional control mechanisms are co-opted to regulate the expression of 

different viral genes. However, beyond the role of the viral protein ICP27 in the area of 

post transcriptional regulation (as reviewed by Sandri-Goldin, 2011), such as the 

regulation of translation of VP16 (Ellison et al., 2005), the post-transcriptional regulation 

of HSV-1 gene expression remains an underexplored area (Weir, 2001).  

Another caveat to the interpretation of the results presented in this chapter is that RNA 

structure within the coding sequence might regulate translation of viral proteins. This 

layer of regulation will be lost when the promoter sequence is used to direct expression of 

an alternate gene, namely eGFP/Cre. Such an issue would be compounded by the use of an 

ectopic location for the insertion of eGFP/Cre. All viruses constructed in this thesis that 

express eGFP/Cre under the control of a lytic gene promoter used the UL3/UL4 intergenic 

location without the disruption of any genes. By contrast, the viruses used by Proença and 

colleagues (2008; 2011) contained disruptions of the gene encoding US5, which is required 

for maximal inhibition of the cell’s apoptosis machinery as well as the modulation of other 

cellular processes (Aubert et al., 2008; Jerome et al., 2001; Jerome et al., 1999). However, 

insertions into the US5 location do not alter virus growth in vitro or in vivo, or the 

establishment of latency, and to a certain extent US5 exhibits functional redundancy with 
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other HSV-1 proteins (Aubert et al., 2006; Balan et al., 1994; Roizman and Whitley, 2001; 

Zhou et al., 2000a). Further, the accumulation of β-gal marked cells in ROSA26R mice 

infected with CMV Cre and ICP0 Cre observed by Proença and colleagues (2008; 2011) is 

similar to that of the viruses HSV-1 pC_eGC and HSV-1 pICP0_eGC as described in this 

thesis.  

The frequency of Cre mediated recombination in vitro is correlated with promoter activity 

(Araki et al., 1997). Therefore, the promoter sequences used were based on published in 

vitro deletion based analysis using CAT plasmids to identify the maximal promoter, while 

still maintaining correct temporal expression (Desai et al., 1993; Pederson et al., 1992; 

Preston et al., 1984; Summers and Leib, 2002). However, repressive elements associated 

with each promoter may not have been included in the modified version inserted into the 

ectopic locus. In particular, there is cluster of binding motifs for the CTCF protein located 

between the ICP47 promoter and US12, and another downstream of US10 (Amelio et al., 

2006b), but this motif was not included in the ICP47 promoter used in this thesis. These 

motifs become enriched with the CTCF protein during latency, having enhancer blocking 

and silencing activities and acting as a barrier between the transcriptionally permissive 

LAT region and the remainder of the HSV-1 genome (Amelio et al., 2006b). Therefore, it 

cannot be ruled out that the insertion of the ICP47 promoter in the potentially more 

repressive UL3/UL4 region may alter the expression kinetics relative to the native 

promoter. However, it seems paradoxical that this would account for the striking 

accumulation of β-gal+ cells during the establishment of latency in ROSA26R mice infected 

with HSV-1 pICP47_eGC. 

The viruses used in this thesis were constructed on the relatively avirulent KOS genetic 

background, as opposed to the more virulent SC16 strain of HSV-1 used by Proença and 

colleagues (Blyth et al., 1984; Dix et al., 1983; Hill et al., 1975; Proença et al., 2008). The 

most cited difference between HSV-1 strains is that the virulence of different strains of 

HSV-1 correlates with an increased frequency of reactivation in mice as measuring using 

induced in vivo reactivation models, and a higher genome copy number per neuron 

(Sawtell et al., 1998; Sawtell and Thompson, 1992b; Strelow et al., 1994; Thompson et al., 

1986). SC16 is substantially more neurovirulent than KOS, and some mice may die as a 

result of acute infection (Blyth et al., 1984), which may shape the latent viral reservoir in 

the surviving mice. However, both SC16 and KOS are able to efficiently establish latency in 

both mice and rabbits, and both exhibit a low rate of virus shedding following adrenergic 

induction of reactivation in latently infected rabbits (Blyth et al., 1984; Hill et al., 1987). 

Further, both the HSV-1 KOS and SC16 strains are considered to be low phenotypic 

reactivators (Hill et al., 1987; Toma et al., 2008; Webre et al., 2012). Therefore, it is 



223 

difficult to determine how the use of different HSV-1 strains would account for the 

differences in protein expression inferred using the ROSA26R model. 

A different method and route of infection was used in this thesis compared to that utilised 

by Proença and colleagues (2008). HSV-1, and in particular HSV-1 LAT deletion mutants, 

can behave differently following infection via different routes with latency established in 

either the TG or DRG (Nicoll et al., 2012; Sawtell and Thompson, 1992a). Moreover, HSV-1 

and HSV-2 show a preference for establishment in different neuronal subtypes following 

ocular infection of mice, namely A5+ and KH10+ neurons respectively, indicating that HSV 

may behave differently in sensory ganglia at different anatomical sites (Margolis et al., 

2007b). The site of latency establishment is unlikely to account for differences in cell 

marking observed in this thesis relative to that published by Proença and colleagues 

(2008; 2011), as latency was established in a similar site, namely the cervical ganglia 

versus the DRG. Further, they found that there was no difference in the trend of cell 

marking of latently neurons with HSV-1 expressing Cre under the control of the CMV IE, 

VP16 or ICP0 promoters when mice were inoculated by scarification of the ear, leading to 

latency establishment in the DRG, or whisker-pad, leading to latency establishment in the 

TG (Proença et al., 2011). 

The trend in the accumulation of β-gal+ cells in ROSA26R mice infected with HSV-1 

expressing Cre from an IRES in the LAT locus was very different to that observed by 

Proença and colleagues (2008) when they examined the accumulation of β-gal marked 

neurons in ROSA26R mice infected with HSV LAT Cre. The number of β-gal+ cells in 

ROSA26R mice infected with HSV-1 pLAT_eGC at 10 days p.i. was comparable to that of 

those mice infected with HSV-1 pC_eGC, and remained stable throughout latency (refer to 

Section 4.2.3 and 4.5). As such, at 100 days p.i., more than twice as many cells were β-gal 

marked when ROSA26R mice were infected with HSV-1 pLAT_eGC compared to HSV-1 

pC_eGC. At first, this may be taken to suggest that the CMV IE promoter is not expressed in 

all infected cells prior to the establishment of latency and so may not mark the entire 

population of latently infected cells. However, the CMV IE promoter has been shown to be 

expressed in a constitutive manner in all cells infected with HSV-1 in a primary neuronal 

culture model of latency (Arthur et al., 2001). Further, Proença and colleagues observed a 

slow accumulation of β-gal marked neurons between days five and 30 p.i. in ROSA26R 

mice infected with HSV LAT Cre, which stabilised thereafter. Therefore, it is more likely 

that HSV-1 pLAT_eGC has an unanticipated genomic alteration that is causing the observed 

phenotype. To determine if this is the case, a revertant virus should be constructed. 
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It is difficult to introduce any foreign transgenes into the LAT region of HSV-1 without 

disrupting any coding or regulatory regions (Bolovan et al., 1994; Jaber et al., 2009; 

Lagunoff and Roizman, 1994; Perng et al., 1996a; Perng et al., 1995; Wagner et al., 1988a). 

Such disruptions may impact on the stability of latency, enabling the virus to spread and 

increase the number of infected cells, even during latency. It has been demonstrated that 

even a small decrease in the viral genome copy number per cell in mice infected with HSV-

1 LAT mutants can alter their reactivation phenotype, and so may alter the efficiency of 

cell marking in ROSA26R mice (Devi-Rao et al., 1994; Maggioncalda et al., 1996; Perng et 

al., 2000a; Sawtell and Thompson, 1992a). Therefore, the viral genome copy number by 

qPCR during latency should be used to confirm that the latent reservoir was similar to 

wildtype virus. Given that the spread of virus to different sensory ganglia appears greater 

following infection with HSV-1 pLAT_eGC compared to HSV-1 pC_eGC, it would be of 

interest to examine this on a per ganglion basis. This could also be paired with an 

examination of the ability of HSV-1 pLAT_eGC to reactivate to produce infectious virus 

based on the spinal level of the ganglion. Finally, a virus in which Cre is under the control 

of the CMV IE promoter from the same location of the genome within the LATs could be 

used to directly compare the accumulation of marked β-gal+ cells in ROSA26R mice during 

latency. 

In summary, in this chapter the accumulation of β-gal marked cells in ROSA26R mice 

infected with HSV-1 expressing Cre as dictated by different promoters was characterised. 

This revealed that the establishment of latency is characterised by a period of slow spread 

of virus. It was also found that lytic promoter activity can lead to protein expression 

during latency, suggesting that some lytic proteins may be expressed during latency. The 

pattern of β-gal+ cell accumulation in ROSA26R mice infected with HSV-1 expressing Cre 

under the ICP47/22 promoter was starkly different from that previously observed, and 

qualitatively appeared similar to that of LAT, than other lytic gene promoters. This 

intriguing finding will be investigated in more detail in chapter 5. 
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5 | An analysis of the expression of ICP47 during  

latency establishment and maintenance: a role  

for viral immune evasion and the CD8+ T cell 

response during the establishment of latency 
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5.1 Introduction 

The pattern of accumulation of marked β-gal+ cells during the establishment of latency 

was starkly different in ROSA26R mice infected with HSV-1 pICP47_eGC compared to 

other HSV-1 lytic promoters (refer to Section 4.4). This indicates that ICP47 and ICP22 

may be more highly expressed during the establishment of latency. ICP47 is unique as it is 

encoded by the only immediate early gene that does not act as a transactivator of viral 

gene expression (DeLuca and Schaffer, 1985; Dixon and Schaffer, 1980; Everett, 1984; 

O'Hare and Hayward, 1985; Smith et al., 1993). Instead, it has only one known function, 

which is to inhibit the transporter associated with antigen presentation (TAP), and so 

hamper the host’s CD8+ T cell response to HSV-1 (Früh et al., 1995; Goldsmith et al., 1998; 

Hill et al., 1995; Orr et al., 2007; York et al., 1994). While not discounting a possible role 

for ICP22 expression during the establishment of latency, this chapter will focus on ICP47 

and its role in evasion of the CD8+ T cell response during HSV-1 infection. 

CD8+ T cells form an important part of the host’s immune response to many pathogens, 

including HSV-1 (as described in Sections 1.1.5 and 1.3.6). CD8+ T cells recognize short 

peptides that are presented on the cell surface by MHC-I, via an interaction with its TCR 

(Bjorkman et al., 1987). There are two main pathways by which peptides are presented on 

MHC-I, namely direct and cross presentation. In direct presentation, these peptides are 

derived from intracellular proteins, including virus-derived proteins, which are processed 

endogenously with cells. Antigens are first cleaved into shorter fragments, a process that 

occurs mainly by proteasomes (Bennink et al., 1984; Gooding and O'Connell, 1983; 

Niedermann et al., 1995; Rock et al., 1994; Townsend et al., 1989). The peptides generated 

are transported into the endoplasmic reticulum by TAP, where they bind partially 

assembled MHC-I molecules associated with β2-microglobulin, with the aid of several 

accessory proteins (Antoniou et al., 2002; Bahram et al., 1991; Gao et al., 2002; Ortmann et 

al., 1997; Peterson et al., 1974). The peptide:MHC-I complex is then transported to the cell 

surface (Figure 5-1; Cox et al., 1990; Grey et al., 1973; Jackson et al., 1994; Nuchtern et al., 

1989; Peterson et al., 1974; Yewdell and Bennink, 1989). Alternatively, some cell types, 

predominantly dendritic cell subsets, are able to present exogenous proteins that are 

acquired through the endocytic pathway on their MHC-I, a process known as cross 

presentation (Bevan, 1976a; Bevan, 1976b; Heath et al., 1998; Joffre et al., 2012; Jung et al., 

2002; Kurts et al., 2001). 

Naïve CD8+ T cells circulate within the host, and in the case of an infection, become primed 

(or activated), a process that mainly occurs within the secondary lymphoid organs such as 

the lymph nodes (Mueller et al., 2002). Priming occurs when naïve CD8+ T cells encounter 
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Figure 5-1. Basic overview of antigen presentation. 1. The proteasome cleaves 

cytosolic proteins to produce polypeptides, which may be trimmed further in the 

cytoplasm. 2. Polypeptides are transported into the ER by TAP. Alternatively, ICP47 

may bind to TAP, preventing the transport of peptides into the ER. 3. Partially 

assembled MHC-I molecules in ER will bind peptide, stabilising the MHC-I, with the aid 

of a number of chaperones. 4. The peptide-loaded MHC-I molecules are transported 

through the Golgi apparatus and to the cell surface. 
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activated professional antigen presenting cells (APCs), such as dendritic cells, displaying 

the appropriate peptide:MHC-I complex. Priming also requires costimulatory signals to 

promote the survival, acquisition of function and expansion of the CD8+ T cell population 

(Curtsinger et al., 2005; Thompson et al., 1989). HSV-1 can infect APCs, but only poorly, so 

cross presentation is the primary means by which HSV-1 antigens are presented by 

professional APCs to CD8+ T cells to prime them following infection (Bosnjak et al., 2005; 

Jirmo et al., 2009; Mueller et al., 2002). The primed CD8+ T cells are able to differentiate 

and expand into effector cells, and then migrate to the site of infection where they can 

recognise virus infected cells. Primed CD8+ T cells then typically either kill the infected 

cells directly or secrete antiviral factors like cytokines (Huang et al., 1993b; Kägi et al., 

1994; Lowin et al., 1994; Morris et al., 1982; Slifka and Whitton, 2000; Zinkernagel and 

Doherty, 1974). 

ICP47 inhibits endogenous presentation on MHC-I by binding directly to the TAP1/2 

heterodimer, preventing the loading of peptides onto MHC-I (Figure 5-1; Ahn et al., 1996; 

Früh et al., 1995; Galocha et al., 1997; Hill et al., 1995; Tomazin et al., 1996). This leads to a 

reduction in the lysis of fibroblast cells by CD8+ T cells in vitro (York et al., 1994). 

However, ICP47 has a low affinity for murine TAP, and peptide transport in these cells is 

not substantially inhibited (Ahn et al., 1996; Tomazin et al., 1996). ICP47 does this by 

binding to TAP, blocking the ATP hydrolysis of the nucleotide binding domain of TAP, 

likely locking TAP in the inward facing conformation (Chen et al., 2003; Lacaille and 

Androlewicz, 1998; Verweij et al., 2015). This limits the availability of peptides in the ER 

to load onto MHC-I, and hence results in the retention of MHC-I within the ER (York et al., 

1994). Functionally, the poor binding of ICP47 to mouse, but not human, TAP can be 

correlated with the relative resistance of HSV-1 infected mouse, but not human, fibroblasts 

to cytotoxic T cells (Koelle et al., 1993; Pfizenmaier et al., 1977; Posavad and Rosenthal, 

1992; Tigges et al., 1996; York et al., 1994). While the usefulness of mouse models of HSV-

1 to study ICP47 is limited, it has been found that viruses that lack ICP47 expression are 

still able to replicate in vivo but are less neurovirulent, a phenotype that is dependent on 

the presence of CD8+ T cells (Goldsmith et al., 1998). 

Overall, ICP47 is a critical immune evasion molecule, helping the virus to subvert the 

host’s CD8+ T cell response. The aim of this chapter is to further investigate the expression 

of ICP47 during latency using the ROSA26R/Cre mouse model. Then, results are presented 

that confirm that the continued accumulation of β-gal+ cells during the establishment of 

latency in ROSA26R mice infected with HSV-1 pICP47_eGC is likely due to bona fide 

expression of ICP47. Finally, a method of increasing antigen presentation on MHC-I in an 
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effort to overwhelm ICP47 mediated inhibition of the CD8+ T cell response will be used to 

further investigate the role of ICP47 during HSV-1 latency establishment. 

 

5.2 Continued historical marking of neurons by expression of Cre 

from the ICP47/22 promoter in ROSA26R mice infected with 

HSV-1 

5.2.1 Further characterisation of historical marking under the 

ICP47/22 promoter in ROSA26R mice 

As described in Chapter four, historical activity of the ICP47/22 promoter in ROSA26R 

mice was strikingly different from that observed when other lytic promoters were used in 

the ROSA26R/Cre system. Notably, there was continued activity under this promoter 

beyond the resolution of the acute infection, as defined by conventional means, and into 

the establishment of latency. Such a broad time course may fail to detect peak in the β-gal 

marking of cells, masking the more subtle variations in ICP47 promoter activity that may 

occur. Therefore, a more comprehensive analysis of the accumulation of β-gal marked cells 

in ROSA26R mice infected with HSV-1 pICP47_eGC was performed, focusing on the 

establishment phase of latency. 

Groups of ROSA26R mice were infected with HSV-1 pICP47_eGC. They were culled at 5, 10, 

30 and 40 days p.i., as well as at three day intervals from 15 to 21 days p.i. The β-gal 

marking of cells was measured as previously described (Figure 5-2). This analysis of the 

historic marking of cells in mice infected with HSV-1 pICP47_eGC revealed a gradual 

accumulation of marked β-gal+ cells during the establishment of latency that largely 

plateaued by day 24 p.i. There was no peak in the number of β-gal marked cells during the 

lytic infection. The historic marking of such a large number of β-gal cells marked is 

inconsistent with the sporadic dysregulated viral gene expression that has been reported 

to occur after the acute infection has resolved, as discussed in Section 4.6, and to date is 

limited to this lytic promoter. Additionally, the number of DRG containing at least one β-

gal marked cell increased until day 15 p.i., and then plateaued thereafter. This is likely to 

reflect the continued spread of virus beyond the acute infection that was described in 

Chapter 4. 

Given the accumulation in β-gal+ cells during the establishment of latency, it was of 

interest to determine if the β-gal marking of cells continued once latency was stably 

established. Therefore, groups of ROSA26R mice were infected with HSV-1 pICP47_eGC 

and culled at 10, 20 and 100 days p.i. The expression of β-gal was then assessed in the  
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Figure 5-2. Gradual accumulation of β-gal marked cells during the establishment 

of latency in ROSA26R mice infected with HSV-1 pICP47_eGC. Groups of three to 

five ROSA26R mice were infected with 1×108 PFU/mL HSV-1 pICP47_eGC. At the 

indicated days p.i. mice were culled and the DRG (from spinal levels T5 to L1) were 

removed and processed for determination of β-gal activity. Both (A) the total number of 

β-gal+ cells per mouse and (B) the number of DRG per mouse containing at least one β-

gal+ cell are shown. Each circle represents one mouse and the black bar represents the 

mean value for all mice at each time point. The results are pooled from two 

independent experiments (n = 6 – 8 per time point). (C&D) Statistical significance was 

determined by a one way ANOVA (p < 0.001) with Bonferroni’s post-test to make 

pairwise comparisons, with key statistical differences indicated on (A) and (B) (*p < 

0.05). 
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DRG. There was a statistically significant increase in the number of β-gal+ cells during the 

establishment of latency between days 10 to 20 p.i. (Figure 5-3). Further, there was also a 

statistically significant increase in the number of β-gal+ cells throughout latency (i.e. 

between days 20 and 100 post infection). This confirmed the results presented in Figure 

4-17 that suggested the accumulation of β-gal+ cells during latency in ROSA26R mice 

infected with HSV-1 pICP47_eGC. There was also a minor, but statistically significant, 

increase in the spread of virus between days 10 and 100 p.i. as shown by the number of 

DRG with at least one β-gal+ cell. This increase probably reflects expression of ICP47 

during latency in cells that had become infected during the period of the acute infection 

but did not experience ICP47 expression, rather than reactivation and infection of new 

cells during latency. If reactivation was responsible for the accumulation of β-gal marked 

cells in ROSA26R mice infected with HSV-1 pICP47_eGC, then the number of β-gal marked 

cells in ROSA26R mice infected with HSV-1 pC_eGC or HSV-1 pICP0_eGC should increase 

during latency. 

Overall, the accumulation of β-gal marked cells, particularly during the establishment 

phase of latency, in ROSA26R mice infected with HSV-1 pICP47_eGC is starkly different to 

every lytic HSV-1 promoter studied to date (refer to Chapter 4; Proença et al., 2008; 

Proença et al., 2011). In qualitative terms, it most closely correspond to that the activity of 

the LAT promoter as described by Proença and colleagues, and suggests that this 

promoter may be regulated in a manner that is unlike other HSV-1 lytic gene promoters. 

Based on the current paradigm of a largely global repression of viral protein synthesis 

during latency, and a historic failure to detect such protein expression at a substantial 

level, it seems reasonable to speculate that this ICP47 expression is likely transient and at 

a low level (Croen et al., 1988; Deatly et al., 1987; Devi-Rao et al., 1994; Krause et al., 1988; 

Mitchell et al., 1994; Puga and Notkins, 1987; Speck and Simmons, 1991; Spivack and 

Fraser, 1987; Steiner et al., 1988; Stevens et al., 1987).  

 

5.3 Verification of the behaviour of the ICP47/22 promoter as a 

lytic promoter in ROSA26R mice 

In this thesis, the expression of Cre in HSV-1 pICP47_eGC was from an ectopic locus using a 

modified ICP47/22 promoter. It was believed that expression under this promoter would 

be similar to that of native ICP47 protein, although this assumption may be erroneous. In 

particular, there are regulatory elements found in the US region of the HSV-1 genome, such 

as CTCF domains, and while these are not primarily responsible for regulating  
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Figure 5-3. Continued accumulation of β-gal marked cells in ROSA26R mice 

infected with HSV-1 pICP47_eGC in which latency has been stably established. 

Groups of three to six ROSA26R mice were infected with 1×108 PFU/mL HSV-1 

pICP47_eGC. At 10, 20 or 100 days p.i. mice were culled and the DRG (from spinal levels 

T5 to L1) were removed and processed for determination of β-gal activity. Both (A) the 

total number of β-gal+ cells per mouse and (B) the number of DRG per mouse 

containing at least one β-gal+ cell are shown. Each circle represents one mouse and the 

black bar represents the mean value for all mice at each time point. The results are 

pooled from three independent experiments (n = 11 – 14 per time point). Statistical 

significance was determined by a one way ANOVA (p < 0.001) with Bonferroni’s post-

test to make pairwise comparisons (*p < 0.05). 
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transcription of US12 during the lytic infection, they likely play some role in expression 

during latency (refer to Section 4.6; Amelio et al., 2006b). Ideally then, it would be 

desirable to be able to directly detect ICP47 protein during the establishment or 

maintenance phases of latency. Recent studies that detect rare viral protein expression 

during latency or following induced reactivation have relied upon the use of 

immunohistochemical staining of serial sections (Feldman et al., 2002; Green et al., 1981; 

Margolis et al., 2007a; Sawtell, 2003; Sawtell and Thompson, 1992a, b). ISH for the 

detection of ICP47 RNA could also be performed. ISH is an exquisitely sensitive method 

that has previously been exploited to detect rare lytic transcripts within latently infected 

ganglia (Carter et al., 2010; Feldman et al., 2002; Femino et al., 1998; Maillet et al., 2006). 

However, all of these methods rely on the detection of ICP47 expression at the point of 

measurement, and so will be confounded by an intermittent expression profile. This will 

be exacerbated by stochastic variation associated with the small population of neurons 

that is potentially infected and expressing ICP47 at any point in time (Kaern et al., 2005; 

Marinov et al., 2014). It is probable that even if these methods were employed they may 

fail to detect transient/low level ICP47 expression, and may still prove inconclusive. So, for 

the purposes of this thesis it was decided that the focus would be on verifying that the 

modified ICP47 promoter inserted into the ectopic locus is able to faithfully model ICP47 

expression in vivo. 

5.3.1 A failure to properly establish latency cannot account for the 

accumulation of β-gal marked cells in ROSA26R mice infected with 

HSV-1 pICP47_eGC 

It is possible that the continued accumulation of β-gal+ cells in ROSA26R mice infected 

with HSV-1 could be due to a failure to establish or maintain latency. To confirm that 

latency is established in this system, groups of ROSA26R mice were infected with HSV-1 

pICP47_eGC. The mice were then culled at four days p.i., at the peak of the acute infection, 

as well at 20 and 40 days p.i., by which time a latent infection should be established. The 

amount of infectious virus in the DRG was then assessed by standard plaque assay using 

the homogenised tissue. As shown in Figure 5-4, infectious virus was detectable at four 

days p.i. The amount of virus detected at this time was similar to that detected in 

ROSA26R mice infected with HSV-1 pC_eGC and is comparable with that previously 

reported in the literature (see Figure 4-3; Van Lint et al., 2004). Further, infectious virus 

was undetectable at 20 and 40 days p.i. This confirms that, at least operationally, latency is 

established in ROSA26R mice infected with HSV-1 pICP47_eGC as would be expected. 
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Figure 5-4. Infectious HSV-1 pICP47_eGC virus is undetectable during latency. 

Groups of four C57Bl/6 mice were infected with 1×108 PFU/mL HSV-1 pICP47_eGC. At 

4, 20 or 40 days p.i. mice were culled and innervating DRG (from spinal levels T5 to L1) 

removed and infectious virus determined by standard plaque assay. Circles show 

results for each mouse and bars mean±SEM, and data are pooled from two independent 

experiments (n = 8 per time point). The limit of detection was two PFU per mouse. 
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5.3.2 Correlation of ICP47 and Cre expression by RT-qPCR in mice 

infected with HSV-1 pICP47_eGC 

One way of confirming that native and ectopic ICP47 promoters regulate gene expression 

in a similar temporal manner is to correlate the expression of the native ICP47 transcripts 

with eGFP/Cre transcripts, which are expressed from the ectopic ICP47 promoter. A 

fluorescence based RT-qPCR assay is one of the most widely used methods for detecting 

even low copy number transcripts in a range of biological settings. Therefore, a qRT-PCR 

based assay was developed to quantify the levels of ICP47 and eGFP/Cre transcripts 

within the DRG of HSV-1 infected mice. These assays were designed to conform to the 

minimum information for the publication of quantitative PCR experiments guidelines 

(Bustin, 2010; Bustin et al., 2009). 

5.3.2.1 Design of a RT-qPCR assay for detection of ICP47 and Cre transcripts 

within HSV-1 infected DRG 

There are two principle methods of quantification of RNA transcripts – absolute, in which 

the number of transcripts is determined in relation to a specific unit, and relative 

quantification, where the expression of a transcript of interest is expressed relative to a 

reference gene. Relative quantification is a more commonly used method due to the 

comparative ease of assay development. However, in the context of monitoring viral gene 

expression over time, relative quantification is not ideal as it is difficult to demonstrate the 

absence of a given transcript. When the amount of mRNA is such that it is just above the 

limit of a threshold of detection, reproducibility can become an issue and when expressed 

as fold change it can lead to misleading results (Mackay, 2004; Mackay et al., 2002). Given 

these potential pitfalls, it was decided that an approach based on the absolute 

quantification of viral DNA would be used to quantify viral transcript levels in vivo. 

A hydrolysis probe-based qPCR method was chosen due to its potential for high specificity 

and sensitivity (Broberg et al., 2003). Many conventional reference genes, such as β-actin 

or GAPDH, can vary widely in expression, and so are unsuitable for use (Dheda et al., 2004; 

Radonić et al., 2004; Tricarico et al., 2002). Pertinently, both GAPDH and β-actin mRNA 

levels decrease within cells as HSV-1 infection progresses (Greco et al., 1997). 

Additionally, there is an influx of inflammatory and other immune cells into the site of 

infection that changes throughout the course of infection (Liu et al., 1996; Shimeld et al., 

1995), which would be expected to alter certain transcript levels (Kodukula et al., 1999). It 

was reasoned that since infected neurons in which the virus would be expected to 

modulate gene expression make up a very small population within a DRG, a neuron-

specific reference gene would be an appropriate choice. Therefore, the highly specific 
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neuronal marker Rbfox3, more commonly known as NeuN, was chosen for use as a 

reference gene (Kim et al., 2009; Mullen et al., 1992). 

An experiment was performed to validate that the ICP47 or Cre assay can be duplexed 

with the Rbfox3 assay without affecting the reaction efficiency. A standard curve was 

constructed using cDNA synthesised based on RNA isolated from mice infected with HSV-1 

pICP47_eGC four days previously. Reactions were performed either singly or were 

duplexed, and for each reaction the CT values of each dilution were plotted against the log 

of dilution factor (Figure 5-5). The efficiency of each reaction was calculated based on the 

slope of the linear regression line, with the results summarised in Table 5-1. In all cases, 

the R2 values were greater than 0.99. For both the ICP47 and Cre assays the reaction 

efficiency ranged between 95 and 99%, whether it was performed singly or duplexed. 

Although the efficiency of the Rbfox3 assay was less than the conventionally accepted 90%, 

the amplification efficiency was similar when this assay was duplexed or performed singly. 

A titration of the amount of the premixed assay used, or in other words changing the 

amount of primer and probe, did not alter the efficiency of this assay (data not shown). 

Given that in this context the purpose of the Rbfox3 reference gene is primarily to control 

for the normalisation of sample input, the reaction efficiency was deemed sufficient for the 

purposes required. Overall, it was concluded that it is valid to duplex either of these assays 

with the reference gene Rbfox3, which in turn can be used to normalise the levels of input 

RNA used in these assays. 

Reaction 
R2 

value 
Gradient 

Reaction 
efficiency (%) 

Cre only 0.996 -3.36±0.063 98.4±2.62 

Cre and NeuN duplexed (Cre detection) 0.999 -3.42±0.033 96.0±1.29 

Cre and NeuN duplexed (NeuN detection) 0.998 -3.81±0.047 83.0±1.39 

NeuN only 0.991 -3.90±0.10 80.5±0.27 

ICP47 and NeuN duplexed (NeuN detection) 0.997 -3.71±0.073 86.0±2.33 

ICP47 and NeuN duplexed (ICP47 detection) 0.997 -3.44±0.054 95.3±2.10 

ICP47 only 0.990 -3.38±0.093 97.6±3.85 

 

 

 

 

Table 5-1. Assessment of reaction efficiency when duplexing reactions. Summary 
of results of standard curve assessing the reaction efficiency when duplexing ICP47 and 

NeuN or Cre and NeuN as shown in Figure 5-5. The R
2
 value, gradient of the standard 

curve and reaction efficiency is shown. 
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Figure 5-5. Assessment of reaction efficiency when duplexing ICP47 or Cre assays 

with the reference Rbfox3 assay. Four C57Bl/6 mice were infected with 1×108 

PFU/mL HSV-1 pICP47_eGC and at five days p.i. mice were culled, and the innervating 

DRG (spinal levels T8 to T13) were removed and snap frozen. RNA was extracted and 

cDNA synthesis performed. Five three-fold serial dilutions of cDNA were used to 

construct the standard curve. A qPCR reaction was performed to assess the reaction 

efficiency when reactions were either performed singly or duplexing assays. Each 

reaction was performed in triplicate with mean±SEM shown and a least square linear 

regression performed using CT values from each dilution. (A) Assessment of reaction 

efficiency by qPCR for detection of Cre only, NeuN only or duplexing Cre and NeuN (CT 

values for Cre shown). (B) Assessment of reaction efficiency by qPCR for detection of 

Cre only, NeuN only or duplexing Cre and NeuN (CT values for NeuN shown). (C) 

Assessment of reaction efficiency by qPCR for detection of ICP47 only, NeuN only or 

duplexing ICP47 and NeuN (CT values for ICP47 shown). (B) Assessment of reaction 

efficiency by qPCR for detection of Cre only, NeuN only or duplexing Cre and NeuN (CT 

values for NeuN shown). 
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5.3.2.2 Design and construction of an RNA-based standard curve for the 

absolute quantification of ICP47 and Cre transcripts 

In order to perform absolute quantification of RNA copy number, a suitable standard 

curve is required. Although standard curves can be based on DNA, they only undergo PCR 

amplification, and not reverse transcription, a step that can introduce a major source of 

transcript-dependent variability (Ståhlberg et al., 2004a). Therefore, the accurate absolute 

quantification of mRNA levels by RT-qPCR depends on the construction of an RNA-based 

standard curve. To do this, the DNA containing the area of interest was cloned into 

plasmids containing the SP6 promoter. The SP6 RNA polymerase was used to synthesise 

ICP47 and Cre RNA transcripts using linearised plasmid as a template. To confirm that the 

desired product was being detected following amplification of the cDNA, a cDNA synthesis 

was carried out using 1 x 106 copies of the appropriate RNA sample, including a –RT 

control, and qPCR reaction was carried out. The resulting products were then analysed by 

PAGE (Figure 5-6). The resulting DNA fragments were each approximately 60 bp as 

desired, and given the high specificity of the primer/hydrolysis probe approach used, this 

RNA was found to be appropriate for the construction of the standard curves. 

To construct the RNA standard curve, the appropriate RNA transcript was diluted to the 

desired concentration in a pool of irrelevant RNA taken from an uninfected mouse. This 

RNA was then used in cDNA synthesis reaction. Therefore, in the final qPCR reaction, the 

desired quantity of template RNA was diluted in the equivalent amount of RNA from a 

single mouse. In order to determine the linearity and reproducibility of this standard 

curve, a qPCR assay was performed (Figure 5-7). The R2 values were both greater than 

0.99, indicating a high level of reproducibility. The efficiency of the ICP47 assay was 

calculated to be 100.7% based on this assay, while the efficiency of the Cre assay was 

99.3%, with a limit of detection of 250 copies per reaction.  

5.3.2.3 Comparison of the expression of ICP47 and Cre transcripts over time 

in mice infected with HSV-1 pICP47_eGC 

In order to compare the activity of the native and ectopic ICP47 promoter, groups of three 

or four C57Bl/6 mice were infected with HSV-1 pICP47_eGC. A single mouse was culled on 

either day 1, 4, 7, 10 or 15 p.i., and the DRG immediately removed and snap frozen as 

rapidly as possible (within five minutes of the death of the mouse). This was repeated 

another five times, so in this way there were at least two independent biological replicates 

per time point. A single mouse was mock infected with PBS to serve as a control and was 

treated as per the infected mice. RNA was isolated and cDNA synthesis performed. The 

number of each transcript was quantified by qPCR assay, with each reaction performed in 

triplicate and so containing one sixth of the RNA isolated from each mouse. In the majority  
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Figure 5-6. Verification of detection of ICP47 and Cre transcripts by qPCR. 1 x 106 

copies of ICP47 or Cre RNA was reverse transcribed and a qPCR reaction carried out. 

The resulting DNA fragments were analysed by PAGE and showed fragments of the 

expected size were detected. The arrows indicate the size of the corresponding DNA 

fragments of the low weight molecular DNA ladder used. 
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Figure 5-7. RNA-based standard curves for absolute quantification of ICP47 and 

Cre transcripts in DRG taken from HSV-1 infected mice. ICP47 or Cre RNA 

transcripts were synthesised from either pUC57 qICP47, or pCR bluntII Cre(R) using 

SP6 RNA polymerase, and serially diluted to the appropriate copy number in an equal 

quantity of irrelevant neuronal RNA. For each point on the standard curve, a separate 

cDNA synthesis reaction was performed. This was followed by a qPCR reaction 

performed in triplicate, with the standard curve for detection of (A) ICP47 and (B) Cre 

transcripts shown, where n = 3 and each point represent mean±SEM. The least square 

linear regression line is calculated using the CT values from each dilution and the R2 

value, the gradient of the line and the resulting reaction efficiency and the limit of 

detection are reported on each graph. 
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 of cases, no amplification was detected in the –RT control, but for four mice there was 

possibly some amplification at the limit of detection with a CT of more than 31. Given that 

this represents in each case less than 1% of the nucleic acid amplified from the +RT 

samples, it was deemed irrelevant for the purposes of this analysis. 

As expected, the peak in the detection of both ICP47 and Cre transcripts was at day four 

p.i., corresponding to the peak of the acute infection (Figure 5-8). Transcript levels then 

declined, with ICP47 and Cre transcripts levels being similar, with no statistically 

significant differences observed between the amount of Cre or ICP47 transcripts per day. 

Somewhat surprisingly, Cre transcripts were detectable in a single mouse at day one p.i. 

By day 10 p.i., the number of ICP47 transcripts had mostly fallen below the limit of 

detection, while the number of Cre transcripts was slightly above the limit of detection. 

This is likely to reflect increased stability of Cre over ICP47 transcripts, or slightly 

increased expression of eGFP/Cre compared to ICP47. By day 15 p.i. no Cre or ICP47 

transcripts were detectable in either mouse. Given that the accumulation of β-gal marked 

cells in ROSA26R mice infected with HSV-1 pICP47_eGC is gradual and occurs over 

relatively long time period, from days 10 to 30 p.i. (Figure 5-1), it is unlikely that this can 

be accounted for simply by the persistence of a low level Cre transcripts. However, the 

caveat remains that transcript and protein abundance are not directly proportional and 

may not be well correlated. In addition to varying efficiencies in the translation of mRNA, 

protein abundance can also be influenced by stability or degradation of the protein. 

Therefore, to determine if protein continues to be expressed during latency establishment 

when regulated by the ectopic ICP47 promoter, a different approach was required. 

5.3.3 Activity of the ICP47/22 promoter during HSV-1 infection as 

defined using a conventional fluorescent reporter 

Generally, the expression of HSV-1 genes in vivo follows a characteristic pattern 

exemplified in Figure 4-6. To confirm that the expression of eGFP/Cre from the ectopic 

ICP47 promoter is similar to other HSV-1 lytic genes, C57Bl/6 mice were infected with 

HSV-1 pICP47_eGC. The mice were then culled at 1, 4, 7 or 14 days post infection, their 

DRG removed and fixed, and the expression of eGFP was assessed using fluorescent 

microscopy of whole mounts of DRG (Figure 5-9). The use of whole DRG is advantageous 

for the detection of reporter genes or viral antigen as it is feasible to examine the entire 

tissue and determine absolute numbers of positive cells, which is impractical and difficult 

with serially sectioned tissues (Margolis et al., 1992; Marshall et al., 2000; Sawtell et al., 

1998; Simmons and Tscharke, 1992). While visualisation of fluorescence in whole DRG can 

be problematic due to the thickness and autofluorescence associated with these tissues, 

recent advances in microscopy and image processing, such as improvements in  
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Figure 5-8. Detection of ICP47 and Cre transcripts over time in C57Bl/6 mice 

infected with HSV-1 pICP47_eGC. Groups of three or four C57Bl/6 mice were infected 

with 1×108 PFU/mL HSV-1 pICP47_eGC and at the 1, 4, 7, 10 or 15 days p.i. a mouse 

was culled, and the DRG (spinal levels T8 to T13) were removed and snap frozen. This 

was repeated a further five times. RNA was extracted and cDNA synthesis performed 

before a qPCR assay was set up to determine ICP47 (red) and Cre (purple) transcript 

levels in each sample. Each point represents a single mouse, where the mean of 

triplicate reactions is shown. The limit of detection was 3333 copies of RNA per mouse 

as indicated by the broken line. The data was analysed using a two way ANOVA, but no 

statistically significant differences were found (p > 0.05). 
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Figure 5-9. Expression of eGFP in C57Bl/6 mice infected with HSV-1 pICP47_eGC. 

Groups of four C57Bl/6 mice were infected with 1×108 PFU/mL HSV-1 pICP47_eGC. At 

1, 4, 7, or 14 days p.i. mice were culled and innervating DRG (from spinal levels T5 to 

L1) removed and processed for determination of eGFP expression. (A) Representative 

photomicrographs showing eGFP associated fluorescence in a single DRG at days 4 or 7 

p.i. at either 50× (scale bar = 250 μm) or 100× magnification (scale bar = 100 μm). Both 

(B) the total number of eGFP+ cells per mouse and (C) the number of DRG per mouse 

containing at least one eGFP+ cell are shown. Each circle represents one mouse and the 

black bar represents the mean value for all mice at each time point. The results are 

pooled from 2 independent experiments (n = 8 for each time point). Statistical 

significance was determined by a one way ANOVA (p < 0.001) and pairwise 

comparisons were performed using the Bonferroni’s post-test (*p < 0.05). 
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apochromatic correction to provide high contrast images, mean that this is now a feasible 

approach for the visualisation of fluorescent reporter proteins like eGFP expressed in vivo 

(Spitzer et al., 2011).  

The peak in the number of eGFP+ cells was at four days p.i. (Figure 5-9). Some eGFP 

expression was detectable at 14 days p.i. but this was restricted to a small population of 

cells, consistent with the observable β-gal expression in mice infected with KOS6β (Figure 

4-6). Therefore, it is unlikely that the expression of the eGFP/Cre protein from this 

modified ICP47 is regulated in a substantially different manner to the native ICP47 which 

contains a copy of the OriS sequence. 

The UL3/UL4 intergenic region is found within the UL region of the genome, in closer 

proximity to the CTRL1 CTCF motif found near the TRL/UL junction (Figure 1-1). CTCF 

binds to these motifs, and act as a barrier to partition the genome into the 

transcriptionally permissive chromatin around the LAT region and repressive areas of 

chromatin across the remainder of the genome (Amelio et al., 2006b). Therefore, 

expression of eGFP/Cre from the intergenic UL3/UL4 region may be typical of a lytic HSV-1 

gene, but this may not hold for the expression under the ICP47 promoter from other 

locations in the genome. To attempt to verify that expression from the ICP47 promoter is 

not altered by its location in the genome, the expression of Tdtomato was measured in 

C57Bl/6 mice infected with HSV-1 pICP47/Tdtom, a virus constructed to express 

Tdtomato from the UL26/UL27 intergenic region of HSV-1 (refer to Section 3.4). Unlike the 

UL3/UL4 region, the UL26/UL27 region is not found near any of these CTCF motifs. 

Furthermore, the fluorescent reporter Tdtomato is one of the brightest fluorescent 

reporter proteins available (Shaner et al., 2004). The emission maximum of Tdtomato is at 

581 nm, which is less affected by the autofluorescence typically observed in the green 

spectrum close to that of eGFP, an issue of particular concern in neuronal tissue (Shaner et 

al., 2004; Spitzer et al., 2011). As such, there should be less background fluorescence 

compared to HSV-1 pICP47_eGC, possibly allowing greater sensitivity. Groups of C57Bl/6 

mice were infected with HSV-1 pICP47/Tdtom, and were culled at three day intervals from 

day one to 16 p.i. Mice were also culled at 30 days p.i. to allow for the assessment of ICP47 

promoter activity during latency. Expression of Tdtomato was assessed by fluorescent 

microscopy of whole mounts of fixed DRG (Figure 5-10). 

 A peak in the number of Tdtomato+ cells was observed at 4 days p.i., with a decline in the 

number of Tdtomato+ cells until 13 days p.i. No Tdtomato+ cells were detectable during 

latency at day 30 p.i. The pattern in the number of Tdtomato+ cells resembles that of β-gal 

expression in C57Bl/6 mice infected with KOS6β (Figure 4-6). This is more consistent with  
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Figure 5-10. Expression of Tdtomato in C57Bl/6 mice infected with HSV-1 

pICP47/Tdtom. Groups of three or four C57Bl/6 mice were infected with 1×108 

PFU/mL HSV-1 pICP47/Tdtom. At 1, 4, 7, 10, 13, 16 or 30 days p.i. mice were culled and 

innervating DRG (from spinal levels T5 to L1) removed and processed for 

determination of Tdtomato expression. (A) Representative photomicrographs showing 

Tdtomato associated fluorescence in a single DRG at days 4 or 7 p.i. at either 50× (scale 

bar = 250 μm) or 100× magnification (scale bar = 100 μm). Both (B) the total number of 

Tdtomato+ cells per mouse and (C) the number of DRG per mouse containing at least 

one Tdtomato+ cell are shown. Each circle represents one mouse and the black bar 

represents the mean value for all mice at each time point. The results are pooled from 

two independent experiments (n = 7 – 8 per time point). (C&E) Statistical significance 

was determined by a one way ANOVA (p < 0.001) with Bonferroni’s post-test to make 

pairwise comparisons, with key statistical differences indicated on (B) and (D) (*p < 

0.05). 
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the conventional view of the activity of lytic promoters during latency, and confirms that 

this modified ICP47 promoter is likely still behaving as a lytic HSV-1 promoter. 

5.3.4 Despite some caveats, the ectopic modified ICP47 promoter 

behaves in a similar manner as the native HSV-1 ICP47 promoter 

In summary, in this thesis the virus HSV-1 pICP47_eGC has been extensively characterised. 

It replicates comparably to wildtype HSV-1 in vitro in Vero cells (refer to Section 3.5.1). 

The expression of eGFP from this ectopic promoter was not inhibited by either 

cycloheximide or acyclovir, as would be expected for the native ICP47 promoter (refer to 

Section 3.5.2). HSV-1 pICP47_eGC also shows similar pathogenesis to wildtype HSV-1 as 

evidenced by lesion progression and size as assessed using the zosteriform C57Bl/6 

mouse model of HSV-1 infection (refer to Section 3.5.3). Further, similar amounts of 

infectious virus are found in the skin and DRG of C57Bl/6 mice infected with either HSV-1 

pICP47_eGC or wildtype HSV-1 KOS (refer to Section 3.5.3). Fluorescence reporter gene 

expression from either the UL3/4 or UL26/27 locus is as would be expected of the native 

ICP47 protein during the lytic infection, with a failure to detect fluorescence during 

latency. Further, a RT-qPCR based assay demonstrated that the expression of Cre and 

ICP47 transcripts was reasonably well correlated, even given the caveats outlined in 

Section 5.3.4, with both transcripts undetectable by day 15 p.i. HSV-1 pICP47_eGC also 

establishes latency normally, with a failure to detect infectious virus in latently infected 

DRG (refer to Section 5.3.2). It also has a normal reactivation phenotype as demonstrated 

by explant reactivation, and maintains the eGFP/Cre expression cassette long-term (refer 

to Section 3.5.4). Therefore, even though there are inherent disadvantages to inferring 

gene expression through reporter gene expression from an ectopic locus, the use of these 

viruses in the ROSA26R model enabled the detection of ICP47 expression during the 

establishment and maintenance of latency that has not been revealed previously.  

The expression of ICP47 during the establishment of latency is probably transient and/or 

at a low level, but does occur in a substantial population of cells. Furthermore, the use of 

the ROSA26R model means that these cells are able to survive ICP47 expression. This is of 

interest given the role for this protein in evasion of the CD8+ T cell response (Früh et al., 

1995; Goldsmith et al., 1998; Hill et al., 1995; Orr et al., 2007; York et al., 1994), as it has 

been shown that the survival of HSV-1 antigen positive neurons is dependent on the 

presence of CD8+ T cells (Simmons and Tscharke, 1992). However, to date investigations 

into the ICP47 have been limited to its impact upon the acute HSV-1 immune response 

(Goldsmith et al., 1998). Since latency is established normally by viruses that lack ICP47 

expression in mouse models of infection (Thilaga Velusamy and David Tscharke, 
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unpublished data), this suggested a more nuanced approach is needed to dissect the role 

of ICP47 expression during latency.  

5.4 Investigating the role of TAP inhibition by ICP47 during 

latency in mice 

The inhibition of TAP in mouse fibroblasts requires concentrations of ICP47 that are 50-

100 fold higher than those needed to inhibit peptide transport through TAP in human 

fibroblasts (Ahn et al., 1996; Tomazin et al., 1996). So, while the prevention of expression 

of ICP47 should increase the efficiency of antigen presentation on MHC-I, in practice the 

poor affinity of ICP47 to murine TAP means that very large differences in phenotype are 

not observed in murine models of HSV-1 infection (Ahn et al., 1996; Goldsmith et al., 1998; 

Tomazin et al., 1996). Therefore, enhancing antigen presentation on MHC-I may be a more 

effective approach for investigating the role of ICP47 in mice. Minigenes are small genes 

consisting of a start codon followed by the minimal sequence required to encode an 

immunogenic peptide that is able to bind to MHC-I (referred to as epitopes). Minigenes 

can be synthesised in vast quantities and are very efficiently presented by MHC-I on the 

cell surface because they do not have to be processed by the proteasomes or other 

cytosolic enzymes (Antón et al., 1997; Porgador et al., 1997; Princiotta et al., 2003). In this 

way, it was hypothesised that the expression of a minigene from HSV-1 would enhance 

presentation on MHC-I and better approximate the behaviour of a virus that lacks ICP47 

expression in humans. There is a caveat, that the likely comparatively high level 

expression of ICP47 (Harkness et al., 2014) means that ICP47 may still be able to exert 

some degree of inhibition on the presentation of a cytosolic minigene. However, the 

inclusion of an ER-targeting motif can result in the transport of these peptides directly into 

the ER, eliminating the requirement for TAP transport prior to binding of peptide to MHC-I 

(Bacik et al., 1994). Therefore, to adopt a conservative approach, an additional virus was 

constructed in which an ER-targeted minigene, which should be presented independently 

of ICP47, was introduced into HSV-1.  

Given that the aim is to investigate ICP47 activity during latency, when expression under 

most promoters is silenced, the continued expression of antigen during latency is 

problematic. Fortunately, results presented in this thesis indicate that there is low level 

activity of the gB promoter during latency (refer to Section 4.3), and a peptide encoded 

within gB (gB498) elicits a strong CD8+ T cell response during latency in C57Bl/6 mice 

(Sheridan et al., 2009; St. Leger et al., 2011). Therefore, a cytosolic or ER-targeted gB498 

minigene were chosen for insertion into the virus to further investigate the role of antigen 

presentation on MHC-I and ICP47 during HSV-1 infection.  
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5.4.1 Generation of recombinant HSV-1 containing a gB498 minigene 

The first virus was constructed to contain an additional copy of the gB498 epitope with an 

ER-targeting motif. An eGFP/Cre fusion gene under the control of the CMV IE promoter 

was also introduced into this virus simultaneously. This virus was named HSV-1 

ESminigB_Cre (Figure 5-11). HSV-1 ESminigB_Cre was then modified to remove the ER-

targeting motif – in other words, to construct a virus that expressed a cytosolic gB498 

epitope. This virus was named HSV-1 minigB_Cre (Figure 5-11). The expression of eGFP by 

microscopy, as well as PCR and sequencing of the insert and surrounding regions of the 

genome, was then performed to verify the construction of these viruses and the absence of 

wildtype virus. In both cases, two independently plaque purified viruses were isolated. 

To confirm that these viruses resemble wildtype virus, a multiple step growth curve was 

performed in Vero cells following low MOI infection (MOI 0.01; Figure 5-12). The growth 

of HSV-1 ESminigB_Cre was similar to that of the parent, wildtype HSV-1 KOS, and the 

control virus HSV-1 pC_eGC, which contains the eGFP/Cre fusion gene but lacks the 

additional copy of the gB498 epitope (Figure 5-12A). Similarly, the growth of HSV-1 

minigB_Cre was not compromised relative to the parent virus, HSV-1 ESminigB_Cre 

(Figure 5-12B). 

5.4.2 Addition of a cytosolic or ER-targeted gB498 minigene to HSV-1 

enhances presentation of gB498 

To confirm that the gB498 minigene is expressed and is able to enhance presentation on 

MHC-I, an indirect in vitro antigen presentation was established as there is no reagent that 

allows the direct detection of gB498:H-2Kb complexes. This assay utilises a gB hybridoma 

(HSV-2.3.2E2) that recognises the gB498 epitope in the context of H-2Kb and has been 

engineered to contain the lacZ gene under the control of the IL-2 promoter (Mueller et al., 

2002). Therefore, following co-culture of infected target cells with the hybridoma, the 

hybridoma becomes activated and IL-2 promoter induction occurs, leading to the 

production of β-gal that can be assayed using the ONPG substrate. The relative absorbance 

of each sample can then be calculated relative to maximal peptide simulation with 

synthetic peptides, as opposed to target cells. This should reflect the direct presentation of 

antigen on the surface of the target cells (Karttunen et al., 1992; Mueller et al., 2002). 

Initially, the dendritic cell-like cell line derived from C57Bl/6 mice, DC2.4, was infected 

with the control HSV-1 pC_eGC, HSV-1 ESminigB_Cre or HSV-1 minigB_Cre. 
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Figure 5-11. Design of recombinant viruses HSV-1 ESminigB_Cre and HSV-1 

minigB_Cre. (A) Schematic representation of the HSV-1 genome with the location of 

UL3 and UL4 indicated (to scale). (B) Schematic representation of the CMV IE promoter 

eGFP/Cre expression cassette inserted the intergenic space between UL3 and UL4 in 

HSV-1 pC_eGC. (C) Schematic representation of HSV-1 ESminigB_Cre, showing the 

eGFP/Cre expression cassette and the ER-targeted gB498 minigene which are 

divergently transcribed, inserted into the intergenic space between UL3 and UL4. (D) 

Schematic representation of HSV-1 minigB_Cre, showing the eGFP/Cre expression 

cassette and the minimal gB498 minigene which are divergently transcribed, inserted 

into the intergenic space between UL3 and UL4. 
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Figure 5-12. Insertion of a gB498-505 minigene has no effect on viral replication in 

vitro. (A) The replication of HSV-1 ESminigB_Cre (red) was compared to wildtype HSV-

1 KOS (black) and HSV-1 pC_eGC (blue) in Vero cells in a multiple step growth curve. 

(B) The replication of HSV-1 minigB_Cre (purple) was compared to the parent HSV-1 

ESminigB_Cre (red) in Vero cells in a multiple step growth curve. Confluent cell 

monolayers in 9.6 cm2 tissue culture wells were infected at a low MOI (0.01 PFU/cell in 

1 mL M0). After one hour, the inoculum was removed, cells washed and 2 mL M2 was 

added. A 0 hour p.i. sample was collected immediately following the addition of fresh 

media. The remaining samples were harvested at 6, 24, 48 or 72 hpi. Virus titres were 

determined by standard plaque assay. Data are mean±SEM of three replicates. 
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 Although only 50 – 60% of cells were infected as determined by flow cytometry for the 

detection of eGFP (data not shown), these cells were able to efficiently present the gB498 

epitope, as inferred by stimulation of the gB hybridoma (Figure 5-13A). HSV-1 minigB_Cre 

infected cells may be able to better stimulate the hybridoma than HSV-1 ESminigB_Cre 

infected cells, but this trend was not replicated in all experiments. Both HSV-1 minigB_Cre 

and ESminigB_Cre infected cells were able to stimulate the gB hybridoma slightly more 

effectively than HSV-1 pC_eGC infected cells. However, the DC2.4 cell line is highly efficient 

at presenting antigen and is often considered to be less physiologically relevant. 

Therefore, the antigen presentation assay was repeated, but with infected MC57G mouse 

fibroblasts as the serving as the stimulator (Figure 5-21B). The level of stimulation was 

much lower, probably because of the relatively inefficiency of antigen presentation by this 

cell line. A similar trend was observed in which HSV-1 minigB_Cre infected cells were able 

to stimulate the gB hybridoma marginally more efficiently than HSV-1 ESminigB_Cre 

infected cells. Both were slightly more effective at stimulating the hybridoma than HSV-1 

pC_eGC infected cells. 

It has been well characterised that ICP47 is much less effective at inhibiting TAP in murine 

compared to human cells, so it was of interest to determine if similar levels of antigen 

presentation would be observed in human cells infected with HSV-1 minigB_Cre or HSV-1 

ESminigB_Cre. Therefore, the human derived 293Kb cell line was infected with HSV-1 

pC_eGC, HSV-1 ESminigB_Cre or HSV-1 minigB_Cre. 293Kb cells have been engineered to 

stably express the murine H-2Kb MHC-I allele and so are able to present the gB498 epitope 

on their cell surface. Infected 293Kb cells were then used to stimulate the gB hybridoma. 

Both HSV-1 ESminigB_Cre and HSV-1 minigB_Cre infected cells were better able to 

stimulate the gB hybridoma than HSV-1 pC_eGC, suggesting that the incorporation of an 

additional minimal gB498 epitope results in efficient antigen presentation, regardless of 

whether or not this epitope is ER targeted or not.  

5.4.3 The pathogenesis and in vivo growth of recombinant HSV-1 

containing a gB498 minigene 

To assess the pathogenicity of these viruses, the flank zosteriform model of HSV-1 

infection was employed as described previously (refer to Section 3.2.1). Groups of 

ROSA26R mice were infected with either of these viruses. Lesion size was measured and 

clinical score monitored daily. Mice did not develop any clinical signs of illness other than 

their lesion, indicating that these viruses were not more neurovirulent than the parent 

virus KOS. The lesions on mice infected with HSV-1 ESminigB_Cre or minigB_Cre were 

significantly larger compared to the mice infected with the control virus (Figure 5-14A). 
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DC2.4 

Figure 5-13. Enhancement of antigen presentation in vitro with the addition of a 

gB498 minigene to HSV-1. (A) DC2.4, (B) MC57G or (C) 293-Kb were infected with HSV-

1 pC_eGC, HSV-1 ESminigB_Cre or HSV-1 minigB_Cre for six hours. The infected cells or 

0.125 μM gB498 peptide were then cocultured with the gB498 specific hybridoma at the 

indicated stimulator:effector ratio for twelve hours. Cells were lysed and assayed for β-

gal expression using ONPG. Absorbance was measured at 420 nm, and the % 

stimulation was calculated relative to maximal gB498 peptide stimulation. Each 

stimulation was performed in triplicate and results are presented at mean±SEM. Each 

cell line was tested seperately and the results shown are representative of at least two 

independent experiments.  
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Figure 5-14. Insertion of a gB498-505 minigene into HSV-1 results in larger lesions 

in C57Bl/6 mice following infection. (A) C57Bl/6 mice were infected by tattoo with 

1×108 PFU/mL with HSV-1 pC_eGC (blue), HSV-1 ESminigB_Cre (red) or HSV-1 

minigB_Cre (purple). Lesion size was measured daily using a caliper and clinical score 

was monitored daily, with mice never displaying any signs of illness other than the 

herpetic lesion on the flank. Data is mean lesion size±SEM (n = 3). Data were compared 

using a one way ANOVA and were found to be significant (p < 0.01), and the means of 

lesion size on each day were compared using a Bonferroni's post-test (***p < 0.001). 

(B) The growth of HSV-1 ESminigB_Cre (red) and HSV-1 minigB_Cre (purple) was 

compared to HSV-1 pC_eGC (blue) in vivo. Groups of four C57Bl/6 mice were infected 

by tattoo with 1×108 PFU/mL. Mice were culled at five days p.i., and infectious virus 

was determined by standard plaque assay from 10 DRG (spinal levels T5 to L1) or 1 

cm2 skin located over the inoculation size. Circles show results for each mouse (n = 4) 

and bars represent mean±SEM. The means for each tissue were compared by a one way 

ANOVA, but no statistically significant differences were observed (p > 0.05). 
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The growth of these viruses was also assessed in both the skin and DRG. Groups of 

C57Bl/6 mice were infected with either of the HSV-1 pC_eGC, ESminigB_Cre or minigB_Cre 

viruses. On day five p.i., mice were culled and the amount of virus in the skin and 

innervating DRG was determined. The growth of the virus in the skin was similar in mice 

infected with each virus (Figure 5-14B). However, mice infected with each of the viruses 

containing an additional copy of the gB498 epitope had approximately ten-fold less virus in 

the DRG compared to HSV-1 pC_eGC infected mice. Although this was not a statistically 

significant difference, it is greater than that which has been previously observed for any 

other recombinant virus compared to wildtype virus used in this thesis. This suggests that 

there may be a relevant, but marginal, decease in the amount of virus within the DRG, 

reflecting either reduced spread of virus or less replication within the DRG.  

To confirm that these viruses are able to reactivate from latency, groups of two C57Bl/6 

mice were infected with HSV-1 KOS, HSV-1 pC_eGC, HSV-1 ESminigB_Cre or HSV-1 

minigB_Cre. At 30 days p.i. the DRG were explanted and incubated for five days to assess 

reactivation. The DRG were then homogenised and the homogenates were used to infect 

Vero cell monolayers. Retrievable infectious virus was detected from all mice. As expected, 

all plaques from virus reactivated from all mice, bar those infected with HSV-1 KOS, were 

eGFP+, confirming the stability of this insert (Figure 5-15). 

5.4.4 No enhancement of the CD8+ T cell response to HSV-1 with the 

addition of an extra copy of the gB498 epitope 

It has been demonstrated that deletion of ICP47 does not alter the size of the CD8+ T cell 

response to HSV-1 (Goldsmith et al., 1998). This is consistent with reports that HSV-1 

antigen is largely cross presented by professional APCs, where ICP47 would not 

expressed, to prime CD8+ T cells (Bosnjak et al., 2005; Jirmo et al., 2009; Mueller et al., 

2002). Further, most minigenes are unable to be cross presented (Norbury et al., 2004; 

Serna et al., 2003). Given that the direct presentation of antigen by infected APCs does not 

contribute substantially to priming of the CD8+ T cell response, the addition of a gB498 

minigene to these viruses should not alter the size of the CD8+ T cell response elicited by 

them, but this should be formally tested. Therefore, the size of the CD8+ T cell response in 

mice infected with a virus expressing either a cytosolic or ER-targeted gB498 minigene was 

measured. 

Seven days after infection, the CD8+ T cell response to HSV-1 pC_eGC, HSV-1 ESminigB_Cre 

or HSV-1 minigB_Cre in C57Bl/6 mice was assessed both in the DRG (Figure 5-16) and the 

spleen (Figure 5-17). As expected, very few CD8+ T cells were detected in the DRG of the 

mock infected control mouse (Figure 5-16A&B, left panel). By contrast, mice infected with 
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Figure 5-15. HSV-1 ESminigB_Cre and minigB_Cre express eGFP following explant 

reactivation. Groups of two C57Bl/6 mice were infected by tattoo with 1×108 PFU/mL 

of one of the viruses listed. At 30 days p.i., DRG from spinal levels T5 to L1 were 

removed and incubated at 37°C for reactivation by explant. After 5 days DRG were 

homogenised, and the homogenates were titrated on Vero cells. Representative plaques 

formed by the parent virus HSV-1 KOS and the recombinant viruses on Vero cells under 

semi-solid M2-CMC as shown by phase contrast microscopy or fluorescence 

microscopy for the detection of eGFP at 100× magnification (scale bar = 150 µm, as 

indicated on the top left photograph). 
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Figure 5-16. The addition of a gB498 minigene to HSV-1 does not alter the size of 

the CD8+ T cell response in the DRG. The CD8+ T cell response in the DRG (from 

thoracic levels T8 to T13) was measured in the experiments described in Figure 5-17. 

Representative flow cytometry plots for mice either mock infected (nil), or with HSV-1 

pC_eGC, HSV-1 ESminigB_Cre or minigB_Cre showing (A) the percentage gB498-specific 

CD8+ T cells of all CD8+ T cells within the DRG or (B) the percentage of activated gB498-

specific CD8+ T cells of all CD8+ T cells within the DRG, as indicated by the detection of 

gzmB. The (A) percentage and (B) number gB498-specific CD8+ T cells of all CD8+ T cells 

within the DRG where n = 3 and mean±SEM. The results of two independent 

experiments are shown as the left and right panels. The means were compared for each 

graph by a one way ANOVA with Newman Kwels post test (*p < 0.05). 
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Figure 5-17. The addition of a gB498 minigene to HSV-1 does not alter the size of 

the CD8+ T cell response in the spleen. Groups of two or three C57Bl/6 mice were 

tattoo infected with 1 × 108 PFU/mL HSV-1 pC_eGC (blue), HSV-1 ESminigB_Cre (red) 

or HSV-1 minigB_Cre (purple), with one C57Bl/6 control mouse mock infected with 

PBS. At 7 days p.i. the CD8+ T cell response in the spleen and DRG (shown in Figure 5-

17) was measured by gB498 dextramer and CD62L surface staining with intracellular 

staining for gzmB. Representative flow cytometry plots for a mouse infected with each 

mouse or mock infected (nil) showing (A) the percentage of gB498-specific CD8+ T cells 

of all CD8+ T cells within the spleen, (B) the percentage of activated gB498-specific CD8+ 

T cells of all CD8+ T cells within the spleen or (C) the percentage activated CD8+ T cells 

within the spleen. The (D) the percentage and (E) number of gB498-specific CD8+ T cells 

of all CD8+ T cells within the spleen where n = 3 and mean±SEM is shown. (F) The 

percentage of activated gB498-specific CD8+ T cells of all CD8+ T cells within the spleen is 

shown were n = 2 - 3 and the mean±SEM is shown. (G) The percentage of activated 

CD8+ T cells within the spleen where n = 2 - 3 and the mean±SEM is shown. The results 

of two independent experiments are shown by the left and right panels. The means 

were compared for the data presented in each graph by a one way ANOVA with 

Newman Kwels post test, but in all cases the difference was not statistically significant 

(p > 0.05). 
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HSV-1 showed an infiltration of approximately 1 × 102 gB498 CD8+ T cells (Figure 5-16D). 

Again, there was no difference in the size of the CD8+ T cell response in the DRG with mice 

infected with HSV-1 pC_eGC, ESminigB_Cre or minigB_Cre (Figure 5-16). There was a 

statistically significant increase in the number of gB498-specific CD8+ T cells in the DRG of 

mice infected with HSV-1 pC_eGC compared to HSV-1 ESminigB_Cre in the second 

experiment, but such a difference was not observed in the first experiment, and so is not 

considered to be important.  

The gB498-specific CD8+ T cell response in mice infected with HSV-1 pC_eGC, ESminigB_Cre 

or minigB_Cre was similar as measured in the spleen, with approximately 10% of CD8+ T 

cells in the spleen being gB498 specific (Figure 5-17A&D). This is also reflected in the total 

number of gB498-specific CD8+ T cells (Figure 5-17E). The majority of the gB498-specific 

CD8+ T cells exhibited an activated phenotype, with high levels of gzmB and low levels of 

CD62L (Figure 5-17B&F). The proportion of all CD8+ T cells in the spleen responding to 

HSV-1 was determined as measured by a gzmBhiCD62Llo phenotype, regardless of 

specificity (Yuen et al., 2010). Using the gzmB/CD62L method, the total CD8+ T cell 

response to each of the viruses tested was also found to be very similar (Figure 5-15C&G). 

Therefore, the insertion of an additional copy of the gB498 epitope to HSV-1 does not alter 

the size of the CD8+ T cell response to HSV-1 in either the spleen, or a site of infection, the 

DRG innervating the infected skin. 

5.4.5 Survival of neurons in mice infected with HSV-1 expressing an 

immunogenic gB498 epitope that is able to evade ICP47-mediated 

inhibition of TAP 

The addition of an additional epitope that evades ICP47-mediated inhibition of TAP should 

lead to an increase in antigen presentation on the surface of infected neurons. This could 

lead to an increased engagement of the CD8+ T cell response and a subsequent loss of 

neurons. The ROSA26R/Cre mouse system can be used to assess the survival of neurons, 

particularly throughout latency, as both viruses constructed contain an eGFP/Cre cassette 

under the control of the CMV IE promoter. Therefore, to determine if there is additional 

loss of neurons in mice infected with a virus that includes a gB498 minigene, groups of 

ROSA26R mice were infected with HSV-1 minigB_Cre and culled at 5, 10, 20, 40 or 100 

days p.i. The innervating DRG were removed and the number of β-gal+ cells determined 

(Figure 5-18).  

The peak in the number of β-gal+ cells was between 5 and 10 days p.i., but the difference in 

the number of β-gal+ cells on these two days was not statistically significant. By contrast, 

when ROSA26R mice were infected with HSV-1 pC_eGC, where there are significantly more  
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Figure 5-18. Expression of β-gal in ROSA26R mice infected with HSV-1 

minigB_Cre. Groups of three to five ROSA26R mice were infected with 1×108 PFU/mL 

HSV-1 minigB_Cre. At 5, 10, 20, 40 or 100 days p.i. mice were culled and innervating 

DRG (from spinal levels T5 to L1) removed and processed for determination of β-gal 

expression. Both (A) the total number of β-gal+ cells per mouse and (B) the number of 

DRG per mouse containing at least one β-gal+ cell are shown. Each circle represents one 

mouse and the black bar represents the mean value for all mice at each time point. The 

results are pooled from two independent experiments (n = 8 per time point). (B&D) 

Statistical significance was determined by a one way ANOVA (p < 0.001) with 

Bonferroni’s post-test to make pairwise comparisons, with key statistical differences 

indicated on (A) and (C) (*p < 0.05). 
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 β-gal marked cells on day 10 p.i. compared to day five p.i. (Figure 5-18). There was also an 

increased spread of virus to additional DRG during this time, consistent with that observed 

for HSV-1 pC_eGC. The number of β-gal+ cells declined as latency was established and 

remained constant throughout latency, between 20 and 100 days p.i. Therefore, there does 

not appear to be a significant loss in the number of infected neurons throughout latency in 

mice infected with HSV-1 engineered to express a cytosolic gB498 minigene, or 

alternatively, increased spread of virus during this time. However, the observation that 

there may be an increased number of β-gal+ cells in ROSA26R mice infected with HSV-1 

minigB_Cre on day five p.i. remained, so to further extend this, the survival of cells in 

ROSA26R mice infected with HSV-1 ESminigB_Cre was performed as this virus may be 

expected to have a stronger phenotype in mice. 

To assess this, groups of ROSA26R mice were infected with HSV-1 ESminigB_Cre, culled at 

various times post infection and their DRG removed and the number of β-gal+ cells 

measured (Figure 5-19). Again, there was an increased number of β-gal marked cells on 

day 5 p.i., such that there was not a statistically significant increase in the number of β-gal 

marked cells between days 5 and 10 p.i. However, there was increased spread of virus to 

different spinal levels at this time, which stabilised after day 10 p.i. The number of β-gal+ 

cells then declined as latency was established. Latency appeared stable, with the number 

of β-gal+ cells remaining constant between 20 and 100 days p.i. There was no statistically 

significant difference in the spread of virus as indicated by the number of DRG that 

contained at least one β-gal+ cell during latency. Therefore, as far as can be determined 

within the limits of this assay (discussed in Section 4.6), there was no spread of virus or 

loss of neurons during latency that occurs with the addition of an ER-targeted gB498 

minigene to HSV-1. 

So, the only difference in the number of infected cells over time for HSV-1 ESminigB_Cre or 

HSV-1 minigB_Cre was an increased number of β-gal+ cells at 5 days p.i. compared to that 

typically observed following infection with HSV-1 pC_eGC (refer to Figure 4-2). Therefore, 

to confirm this observation and directly compare the survival of neurons mice infected 

with HSV-1 with either an ER-targeted or cytosolic minigene to the HSV-1 pC_eGC, groups 

of ROSA26R mice were infected with HSV-1 pC_eGC, ESminigB_Cre or minigB_Cre. Mice 

were culled at four, seven, 10 or 13 days p.i., their innervating DRG removed and the 

number of β-gal+ cells was counted (Figure 5-20).  

For all viruses, the number of β-gal+ cells the increase in the number of β-gal marked cells 

between four and seven days p.i. was statistically significant. When comparing the number 

of β-gal marked cells on day four p.i. between the three different viruses, there was no 
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Figure 5-19. Expression of β-gal in ROSA26R mice infected with HSV-1 

ESminigB_Cre. Groups of three to five ROSA26R mice were infected with 1×108 

PFU/mL HSV-1 ESminigB_Cre. At 5, 10, 20, 40 or 100 days p.i. mice were culled and 

innervating DRG (from spinal levels T5 to L1) removed and processed for 

determination of β-gal expression. Both (A) the total number of β-gal+ cells per mouse 

and (B) the number of DRG per mouse containing at least one β-gal+ cell are shown. 

Each circle represents one mouse and the black bar represents the mean value for all 

mice at each time point. The results are pooled from three independent experiments (n 

= 10 – 13 per time point). (B&D) Statistical significance was determined by a one way 

ANOVA (p < 0.001) with Bonferroni’s post-test to make pairwise comparisons, with key 

statistical differences indicated on (A) and (C) (*p < 0.05). 
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Figure 5-20. Expression of β-gal in ROSA26R mice infected with HSV-1 

ESminigB_Cre in direct comparison to minigB_Cre. Groups of two or three ROSA26R 

mice were infected with 1×108 PFU/mL HSV-1 pC_eGC (blue), ESminigB_Cre (red) or 

minigB_Cre (purple). At 4, 7, 10, or 13 days p.i. mice were culled and innervating DRG 

(from spinal levels L1 to T5) removed and processed for determination of β-gal 

expression. Both (A) the total number of β-gal+ cells per mouse and (B) the number of 

DRG per mouse containing at least one β-gal+ cell are shown. Each circle represents one 

mouse and the black bar represents the mean value for all mice at each time point. The 

results are pooled from 3 independent experiments (n = 8 per virus per time point). 

Statistical significance was determined by a two way ANOVA (p < 0.001 for (A) and p > 

0.05 for (B) with Bonferroni's post-test to make pairwise comparisons (*p < 0.05). 
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statistically significant differences. However, there was significantly more β-gal+ cells in 

mice infected with HSV-1 pC_eGC, compared to either virus containing an additional copy 

of the gB498-505 epitope on both seven and 10 days p.i. Therefore, there may be an increased 

loss of neurons in mice infected with these viruses that occurs around the peak of the CD8+ 

T cell response (Coles et al., 2002). By day 13 p.i. the difference in the number of β-gal 

marked cells is largely abrogated, with only a slight, though still significant, difference in 

the number of β-gal+ cells in mice infected with HSV-1 ESminigB_Cre. Mice infected with all 

viruses had significantly less β-gal marked cells on day 13 compared to day 10 p.i., 

consistent with previous results following infection of ROSA26R mice with HSV-1 pC_eGC 

(Figure 5-20A; refer to Figure 4-3).  

For all viruses, there was a statistically significant increase in spread between days four 

and seven p.i., as shown by the number of DRG that contain at least a single β-gal cell. For 

HSV-1 minigB_Cre there was also a significant increase in the spread of virus between 

days seven and 10 p.i., while for HSV-1 pC_eGC there was significantly more spread of 

virus between days seven and 13 p.i. However, on each day, there was no significant 

difference in the number of DRG containing at least one β-gal+ cell, indicating that there 

was no difference in the spread of virus with the addition of a gB498 minigene (Figure 5-

20B). 

Overall, there was no discernible difference in the loss of neurons in mice infected with a 

virus containing either a cytosolic or ER-targeted minigene. The subtle decrease in the 

number of β-gal+ neurons relative to HSV-1 pC_eGC is attributable to the addition of an 

extra copy of the gB498 epitope (Figure 5-19). However, there is the very important caveat 

that HSV-1 minigB_Cre was derived from HSV-1 ESminigB_Cre, and a revertant virus was 

not constructed. Therefore, it is formally possible that any differences in the accumulation 

of β-gal marked cells following infection of ROSA26R mice may reflect the effect of an 

unintended secondary site mutation. 

 

5.5 Discussion 

This chapter began with the finding that marked β-gal+ cells continued to accumulate 

during latency in ROSA26 mice infected with HSV-1 pICP47_eGC, in addition to the 

substantial cell marking that takes place during latency establishment. This is indicative 

that ICP47 expression continues to occur in additional neurons during latency. However, 

examining the temporal expression of eGFP or Tdtomato as regulated by this promoter 

during the establishment phase of latency and beyond did not lead to the detection of any 
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reporter gene activity (refer to Section 5.3.4). Therefore, this led to the conclusion that any 

expression of ICP47 during this time is likely to be at a low level and transient.  

There are disadvantages to using an ectopic locus to express cre under the ICP47 

promoter, but it was felt that this virus design would be most likely to faithfully model 

ICP47 expression. Often proteins are tagged with reporter genes to ensure they are 

expressed with identical kinetics, but in this case it was unfeasible. ICP47 is a small, 

approximately 12 kDa, protein (88 amino acids long), and the fusion of an additional 146 

kDa eGFP/Cre or 35 kDa Cre protein would be likely to disrupt its function and prevent it 

from binding TAP (Abremski and Hoess, 1984; Phillips, 2001; Rixon and McGeoch, 1984). 

Alternatively, the eGFP/Cre gene could be inserted in place of US12 so that eGFP/Cre is 

expressed under the native ICP47 promoter. However, ICP47 function would need to be 

restored to HSV-1, probably by inserting it into an ectopic location under its native 

promoter, which has similar limitations to the virus constructed in this thesis. Further, the 

replacement of ICP47 may disrupt other regulatory elements in this region. The US10, 

US11 and US12 genes are encoded by three mRNAs that have distinct 5’ termini but a 

common 3’ terminus. As such, the US12 transcript has a long untranslated region. Further, 

the ORFs of the US10 and US11 genes overlap each other out-of-frame (Rixon and McGeoch, 

1984). Finally, insertion of eGFP/Cre under the control of an IRES behind the US12 gene 

could be performed, such that eGFP/Cre is expressed under the native US12 promoter 

(Adam et al., 1991; Ghattas et al., 1991; as reviewed by Ngoi et al., 2004). However, genes 

under the control of an IRES are not always expressed as abundantly as the gene under 

direct promoter control, and the addition of such a large sequence may result in a 

significant disruption to this area of the genome (Hennecke et al., 2001; Mizuguchi et al., 

2000; Rixon and McGeoch, 1984). Despite their limitations, the construction of these 

viruses and the investigation of their behaviour in vivo, particularly using the ROSA26R 

mouse system, represents an important future direction for the confirmation of the results 

presented in this chapter. 

By using the ICP47/22 promoter, the data presented in this thesis indicates that ICP47 

and/or ICP22 may be expressed during the establishment of latency. While the focus of 

this thesis has been on ICP47, ICP22 plays an important role during HSV-1 infection. As 

described previously, ICP47 has been demonstrated to have an immunomodulatory role in 

HSV-1 infection, inhibiting the transport of antigen, and thus plays a role in protecting 

cells from the CD8+ T cell response (Früh et al., 1995; Goldsmith et al., 1998; Hill et al., 

1995; Orr et al., 2007; York et al., 1994). Further, a recent analysis of the HSV-1 

transcriptome by RNAseq revealed that ICP47 is one of the most abundantly transcribed 

genes in productively infected TG neuronal cultures, suggesting it may be highly expressed 
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in the PNS in vivo (Harkness et al., 2014). Despite this, a mutant virus that fails to express 

ICP47 showed that ICP47 expression has little impact on corneal and skin disease severity 

following ocular infection. This observation is typically attributed to the poor binding of 

ICP47 to mouse TAP. This virus lacking ICP47 expression also replicated normally in the 

skin, possibly because IFN-γ is able to stimulate upregulation of MHC-I, balancing the poor 

inhibition of murine TAP by ICP47 (Ahn et al., 1996; Goldsmith et al., 1998; Tigges et al., 

1996; Tomazin et al., 1996; Wallach et al., 1982). 

ICP47 is just one of many HSV-1 immune modulators that are expressed during the course 

of the acute infection, targeting all facets of the antiviral response. For example, the virion 

host shutoff protein has been shown to be an important immunomodulator that 

counteracts the innate immune response through multiple mechanisms, including the 

shutdown of the host cell’s protein synthesis, leading to down-regulation of MHC-I 

expression (Kwong and Frenkel, 1987; Pasieka et al., 2009; Suzutani et al., 2000; Tigges et 

al., 1996). Likewise, the γ34.5, ICP0 and US11 proteins all help HSV to evade type I IFN 

activity via a number of different mechanisms (Leib et al., 2000; Lin et al., 2004; as 

reviewed by Paladino and Mossman, 2009; Sanchez and Mohr, 2007). The HSV-1 

glycoproteins also play important roles in immunoevasion. Glycoprotein L and gE bind 

antibody on the surface of infected cells and virions, forming bipolar bridges that allow 

them to escape neutralisation by complement and antibody dependent killer cells (Frank 

and Friedman, 1989; Lubinski et al., 2011; Nagashunmugam et al., 1998). Further, gC acts 

as a C3B receptor, blocking activation of both the alternative and classical complement 

pathways (Hung et al., 1994; Kostavasili et al., 1997; Lubinski et al., 1998). In summary, 

HSV-1 does express other immune modulators, but ICP47 is unique as it is expressed early 

in the gene expression cascade, and targets the CD8+ T cell response (Goldsmith et al., 

1998; Harkness et al., 2014). 

It was originally believed that neurons do not express MHC-I, suggesting that this was a 

site where the virus could reside that helps it to evade the immune response (Joly et al., 

1991; Lampson and Fisher, 1984; Wong et al., 1984). However, it was shown in 1992 

(Simmons and Tscharke) that CD8+ T cells play an important role in controlling the acute 

infection in ganglia. Moreover, more recent, sensitive analyses have revealed that neurons 

are able to express MHC-I (Goddard et al., 2007). The expression of MHC-I is usually 

upregulated in response to stimuli such as cytokines, direct injury and, in particular, viral 

infection, such as during acute HSV-1 infection (Lampson and Fisher, 1984; Maehlen et al., 

1988; as reviewed by Neumann, 2001; O'Malley and MacLeish, 1993; Pereira and 

Simmons, 1999; Pereira et al., 1994; Wallach et al., 1982). There is little evidence to 

suggest that latently infected neurons express MHC-I, but it is likely to be upregulated 
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during reactivation, possibly in response to IFN-γ production (Lampson and Fisher, 1984; 

Pereira et al., 1994; Wallach et al., 1982). Therefore, given the exquisite sensitivity of CD8+ 

T cells to even very low levels of antigen, the low level of MHC-I expression and the results 

presented in this thesis suggesting continued expression of ICP47 during latency, it is 

likely ICP47 could have a significant impact on the CD8+ T cell response to HSV-1 in the 

PNS by restricting antigen presentation on MHC-I (Purbhoo et al., 2004). This is reinforced 

by the increased neurovirulence of HSV-1 that lacks ICP47 expression (Goldsmith et al., 

1998). 

ICP47 could help HSV-1 to avoid CD8+ T cell surveillance in the ganglia during latency and 

thereby facilitate reactivation, but the frequency of reactivation or the stability of latency 

has not been measured using any of the mutant viruses available which lack ICP47 

(Goldsmith et al., 1998; Mavromara-Nazos et al., 1986). The general consensus is that 

neurons fail to survive reactivation, but results presented in this thesis suggest that those 

cells that experience ICP47 expression during latency survive and continue to accumulate. 

This seeming paradox may be explained by the ability of ICP47 to prevent transport by 

human TAP far more efficiently than mouse TAP (Ahn et al., 1996; Früh et al., 1995; 

Jugovic et al., 1998; Tomazin et al., 1996; York et al., 1994). In an effort to address this 

issue, Orr and colleagues (2005) introduced inhibitors of antigen presentation from other 

herpesviruses which block MHC-I expression on mouse cells in an effort to mimic the 

inhibition of antigen presentation by HSV-1 observed in humans. This included US11 from 

human Cytomegalovirus (CMV), which binds the MHC-I heavy chain in the ER and 

translocates it to the cytoplasm for degradation, and m152 from murine CMV, which 

retains MHC-I complexes in the ER/cis Golgi intermediate compartment (Ameres et al., 

2014; Wiertz et al., 1996; Ziegler et al., 2000; Ziegler et al., 1997). They found that murine 

fibroblasts were more susceptible to CD8+ T cell mediated lysis. This translated into a loss 

of CD8+ T cell mediated control of the acute infection and increased virulence (Orr et al., 

2005; Orr et al., 2007). Further, the frequency of induced reactivation in vivo following UV 

irradiation was increased in mice infected with HSV-1 containing the genes encoding 

either US11 or m152 in a CD8+ T cell dependent manner (Orr et al., 2007). However, both 

US11 and m152 inhibit different stages of MHC-I presentation, which may not be as 

effective as that of ICP47 in human cells. For example, US11 is just one of four genes 

encoded by human CMV that is able to inhibit MHC-I presentation, and its effectiveness in 

preventing antigen presentation is restricted by factors like MHC allotype (Ameres et al., 

2014). Further, although m152 effectively blocks presentation in vitro, it has less effect on 

the CD8+ T cell response in vivo (Gold et al., 2002). Alternatively, a more relevant approach 

to examining the role of ICP47 is to develop a transgenic mouse in which murine TAP is 
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replaced with human TAP, also known as a humanised TAP mouse. This model would 

most likely be viable as it is known that human TAP can interact with mouse MHC 

molecules, loading them with viral peptides (Tscharke et al., 2005). Further, the 

expression of mouse, but not human, TAP in a stable HeLa cell line designed to express 

ICP47 allowed for the transport of peptide (Früh et al., 1995). In this mouse model, ICP47 

would bind more efficiently to TAP, and this confounding variable could then be removed, 

and the importance of ICP47 truly explored. 

In an attempt to determine the functional relevance of ICP47, two viruses that incorporate 

a gB498 minigene designed to enhance presentation on MHC-I were constructed and 

studied. The gB498 peptide was presented as efficiently as both an ER targeted or cytosolic 

minigene in both murine or human derived cell lines (refer to Section 5.4.4). Both ER-

targeted and cytosolic minigenes are generally presented much more efficiently than 

antigen that is processed from full length protein, which is typically an inefficient process 

at physiological levels (Antón et al., 1997; Porgador et al., 1997; Princiotta et al., 2003). 

Therefore, these results confirm that the efficiency of presentation of the gB498 minigene is 

able to overwhelm any potential inhibition by TAP (Ahn et al., 1996; Früh et al., 1995; 

Jugovic et al., 1998; Tomazin et al., 1996). However, this result could be due to 

methodological differences, as the effect of ICP47 inhibition of TAP on the presentation of 

antigen on MHC-I on the cell surface was not directly measured. Instead, the ability of 

cytotoxic T cells to lyse infected human or mouse fibroblasts was used as a surrogate 

measure of inhibition of MHC-I presentation (Karttunen et al., 1992; Mueller et al., 2002; 

York et al., 1994), whereas in this chapter the activation of a gB498 specific hybridoma 

following stimulation with infected cells was used to infer gB498 presentation. Overall, the 

most reasonable interpretation is that the expression of the gB498 minigene effectively 

swamps the antigen presentation pathways and is able to overcome any effect ICP47 

inhibition may have on antigen presentation. 

No differences were observed in the stability of latency within ROSA26 mice infected with 

HSV-1 pC_eGC, HSV-1 ESminigB_Cre or minigB_Cre but given the limited sensitivity of this 

system, the ineffectiveness of ICP47 in mice and their lack of spontaneous reactivation, 

this was not unexpected (Ahn et al., 1996; Deatly et al., 1987; Früh et al., 1995; Gebhardt 

and Halford, 2005; Jugovic et al., 1998; Laycock et al., 1991; Tomazin et al., 1996). Further, 

the results presented by Orr and colleagues (2007), who found an increased rate of 

reactivation following UV irradiation, suggest that the impact of ICP47 may be greatest on 

reactivation. In this thesis, induced reactivation was assessed by explant, a less 

physiological method of reactivation that is largely independent of the host’s immune 

response, and is not very sensitive (Sawtell and Thompson, 2004; Stevens and Cook, 
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1971). The assessment of the ability of the virus to reactivate in each individual ganglion 

by explant is more sensitive, and reflects not just the ability of the virus to reactivate but 

also the spread of virus during the acute infection and beyond. Further, it may be of 

interest to investigate the frequency of reactivation in a more relevant model, such as UV 

induced reactivation, which can be used in mice with an intact immune system (Shimeld et 

al., 1996b; Wakim et al., 2008c). 

The only differences in phenotype of these viruses were observed during the acute 

infection, contrary to what was hypothesised based on the continued accumulation of β-

gal marked cells in ROSA26R mice infected with HSV-1 pICP47 during latency 

establishment and beyond. On days four and seven p.i. there were significantly fewer β-gal 

marked cells in ROSA26 mice. Given how small this difference was and the lack of a 

revertant virus to control for secondary site mutations, the importance of these findings is 

unclear. There was less virus in the DRG of those mice infected with viruses containing a 

gB minigene, although this difference was not found to be statistically significant. The 

most striking difference was the increased lesion size in mice infected with either HSV-1 

ESminigB_Cre or minigB_Cre relative to the control virus HSV-1 pC_eGC, peaking at days 

four to six p.i. The disease severity of herpes labialis is correlated with viral load (Rytel et 

al., 1978; Spruance et al., 1977), but the amount of virus in the skin at five days p.i. was 

similar for HSV-1 pC_eGC, ESminigB_Cre and minigB_Cre. It would be of interest to see if 

there is continued persistence of infectious virus beyond day five p.i. Despite this marked 

difference in lesion size, there did not appear any difference in the day when the lesions 

healed. There is the caveat that a proper revertant control virus was not constructed, but 

the insertion of an extra copy of the gB498 epitope under the control of different promoters 

into two independently derived HSV-1 resulted in a similar increase in lesion size 

following tattoo infection (Tijana Stefanovic and David Tscharke, unpublished data). 

Overall, the insertion of a copy of the gB498 minigene into HSV-1 suggested that the larger 

lesion size may be due to increased immunopathology.  

The timing of the difference in lesion size implicates CD8+ T cells, as well as suggesting a 

role for cells of the innate immune response in this phenomenon, such as NK cells or 

macrophages, likely mediated by altered cytokine production (Coles et al., 2002; Kodukula 

et al., 1999; Liu et al., 1996; Stumpf et al., 2002; Van Lint et al., 2004). Recently, the role of 

proinflammatory processes on the progression and resolution of HSV skin lesions has 

begun to be appreciated, with two clinical trials showing an increased efficacy of topical 

acyclovir when combined with a hydrocortisone cream (as reviewed by Hull et al., 2011; 

Hull et al., 2014). Further, it is believed that the proinflammatory cytokines like TNF-α, 
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IFN-γ and IL-6 can play an important role in mediating HSV-1 infection (Geiger et al., 1997; 

Kodukula et al., 1999; Liu et al., 1996; Pasieka et al., 2009; Stumpf et al., 2002). For 

example, mice lacking IL-6 are more likely to succumb to lethal HSV-1 ocular infection 

following infection with the McKrae strain. Further, there were no observable differences 

in viral replication, spread to the nervous system, establishment of latency or reactivation 

relative to wildtype mice, suggesting that this is mediated by immunopathology (LeBlanc 

et al., 1999). Consistent with this, mice lacking IL-6 have also been shown to exhibit less 

corneal inflammation than control mice following infection with the RE strain of HSV-1 

(Fenton et al., 2002). As expected, the addition of a gB498 minigene had little impact on the 

generation of the CD8+ T cell response towards HSV-1 (Goldsmith et al., 1998; Orr et al., 

2005). As minigenes, including the gB498 minigene, are only able to be presented via direct 

presentation, the only effect should be on antigen presentation by infected cells, and not 

on cross presentation, which is carried out by APCs that prime the CD8+ T cell response 

(Wong and Tscharke, unpublished data; Bosnjak et al., 2005; Jirmo et al., 2009; Mueller et 

al., 2002). It is likely that the increased expression of the immunodominant gB498 epitope 

on infected cells leads to a more effective CD8+ T cell response, especially in the PNS where 

MHC-I expression is lower (Pereira et al., 1994). Therefore, it would be of interest to 

examine the production of IFN-γ and other proinflammatory cytokines in mice infected 

with these viruses. Further, as these cytokines mediate the influx of other immune cells 

which could potentially mediate the skin pathology observed, it would be of interest to 

measure infiltration of NK cells, macrophages or γδ CD8+ T cells. 

The discovery that ICP47 may be expressed during the establishment phase of latency and 

beyond further confirms the role of ICP47 in the intersection between the host’s immune 

response and viral reactivation. In light of the stability of latency in mice, the relatively 

poor ability of ICP47 to bind to murine TAP, and the results presented in this chapter, 

ICP47 warrants further investigation, particularly when considering latency. This 

coincides with an increasing appreciation for the role CD8+ T cells play in mediating the 

maintenance of and reactivation from latency (recently reviewed by Egan et al., 2013). 
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6 | Final discussion 
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Herpesviruses are ubiquitous, connected by their central defining characteristic, which is 

their ability to establish latency. Historically, HSV latency was believed to be especially 

profound, a paradigm that has shaped HSV research. However, despite decades of 

research, the role of disparate biological factors, both virus and host, in regulating latency 

remains enigmatic. Although approximately one third of those infected with HSV will 

experience a symptomatic episode (reviewed by Whitley et al., 1998), there is no vaccine 

against HSV-1 (McAllister and Schleiss, 2014) and only limited, often ineffective, options 

for antiviral drug treatment available. There is currently no treatment available that 

targets the virus during latency, or enables clearance of the latent reservoir of viral DNA 

(reviewed by James and Prichard, 2014). Further, recurrent ocular infection is responsible 

for most of the morbidity associated with HSV-1 (Rolinski and Hus, 2014). As such it is 

critical that we develop a greater understanding of HSV-1 latency and reactivation to 

address this significant health issue. This final discussion will draw together the important 

themes of this thesis, beginning with the need to continually develop and improve upon 

models to investigate HSV. Next, the establishment phase of latency will be considered, 

with particular emphasis on the implications of low level viral activity during this time in 

the context of a strong CD8+ T cell response. Finally, a model for viral reactivation during 

latency will be elaborated upon, which discusses the multiple barriers that the virus must 

overcome prior to reactivation, viral dissemination and recrudescence. 

In this thesis, the ROSA26R/Cre mouse system was employed to track viral gene 

expression, allowing permanent marking of cells that have experienced promoter activity, 

even if this activity is not ongoing. Central to the use of this model was the development of 

methods for the generation of recombinant HSV that express Cre recombinase with 

minimal disruption to the viral genome, described in Chapter three. By optimising the 

transfection/infection method for generating recombinant virus, as well as incorporating 

the CRISPR/Cas9 technology, the efficiency by which these viruses could be constructed 

was greatly improved, with a more 200-fold increase in efficiency of recombination when 

CRISPR/Cas9 is employed in conjunction with the optimised transfection/infection 

method compared to the transfection/infection based method alone (Russell et al., 2015). 

These improvements facilitated the construction of the viruses required to investigate 

lytic viral gene expression during both the lytic infection and latency, as described in 

chapters four and five. This also included several viruses that proved too difficult to 

construct before the adoption of the CRISPR/Cas9 system. In the future, this system will 

likely prove invaluable for generating recombinant HSV-1 more efficiently with minimal 

unintended disruptions of the viral genome, particularly small changes such as single 

point mutations or deletions of protein domains (Bi et al., 2014; Russell et al., 2015; 
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Suenaga et al., 2014). Given the current advances in genome engineering using 

CRISPR/Cas9 technology (Doudna and Charpentier, 2014), these advances will aid in the 

development of more effective models for the study of HSV-1, including both animal and 

tissue culture systems.  

The acute HSV-1 infection has been relatively well characterised, but the absence of 

infectious virus, coinciding with the peak in the CD8 T cell response, at day seven p.i. is 

often considered to mark the resolution of this stage of infection (Coles et al., 2002; Luker 

et al., 2002; Sawtell et al., 1998; Sedarati et al., 1989; Simmons and Nash, 1984; Simmons 

and Tscharke, 1992; Speck and Simmons, 1998; Van Lint et al., 2004). One of the most 

striking findings of this thesis was that the peak in the number of β-gal marked neurons in 

ROSA26R mice infected with HSV-1 pC_eGC, HSV-1 pgB_eGC or HSV-1 pICP0_eGC was at 10 

days p.i., beyond the resolution of the acute infection as conventionally determined. This 

large disparity is unlikely to be accounted for by the low level viral activity that has been 

detected during this time (Ramachandran et al., 2008; Sawtell, 2003; Sawtell et al., 1998; 

Sedarati et al., 1989; Shimeld et al., 1995; Steiner et al., 1989; Thompson et al., 1986). It is 

clear some cells that become β-gal marked will not go on to establish latency, as the 

number of β-gal marked neurons decreases between days 10 and 20 p.i. in ROSA26R 

infected mice. However, β-gal marked neurons are detectable during latency in distal DRG 

like L1 and T5 that were not detectable in ROSA26R mice infected five days previously. 

Therefore, latency must be established in at least some neurons that are marked between 

days five and 10 p.i. and there is value in examining this typically ignored stage of the HSV-

1 infection. 

The antiviral immune response is dramatically different later during the acute infection 

(between days five and 10 p.i.), with a strong proinflammatory cytokine environment, and 

the development of a primed CD8+ T cell response, which is believed to be responsible for 

the cessation of the lytic infection (Coles et al., 2002; Halford et al., 1996a; Shimeld et al., 

1997; Simmons and Tscharke, 1992; Van Lint et al., 2004). The presence of these CD8+ T 

cells may serve to rescue neurons infected with HSV-1, so a latent, rather than lytic, 

infection may be established in a larger proportion of neurons at this later time p.i. This 

would be consistent with the observation that, despite the development of a strong CD8+ T 

cell response during acute HSV-1 infection, there is very little destruction of neuronal 

tissue in either mice, rabbits or humans, especially in non-ocular models that are 

associated with lower levels of inflammation (Himmelein et al., 2015; Perng et al., 2000b; 

Simmons and Tscharke, 1992; Theil et al., 2003a). 
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A number of non-cytolytic mechanisms have already been identified by which CD8+ T cells 

may be able to play such a role. For example, Knickelbein and colleagues (2008) proposed 

that CD8+ T cells may act by a non-cytotoxic mechanism to help maintain latency, in which 

gzmB cleaves ICP4, presumably to prevent viral gene transcription that could lead to 

reactivation. GzmA, which is not directly cytolytic, may also play a role in restricting the 

viral load in ganglia, particularly at later times p.i. (Pereira et al., 2000). Similarly, IFN-γ 

may also be able to play such a role. In IFN-γ knockout mice, infectious virus is shed for 

longer after the resolution of the acute infection compared to wildtype mice, although 

most studies find no difference in the titre of virus within the ganglia during the acute 

infection (Bouley et al., 1995; Cantin et al., 1999; Leib et al., 1999; Minami et al., 2002). 

Despite this, there were increased numbers of apoptotic cells in the brains of transgenic 

mice that are unable to express IFN-γ compared to wildtype mice following intravitreal 

inoculation with HSV-1 strain F (Geiger et al., 1997). It is also known that IFN-γ can block 

ICP0 and gC promoter activity as well as reactivation in some neurons in latently infected 

ex vivo TG cultures without an observable cytolytic effect (Decman et al., 2005b; Liu et al., 

2001). Likewise, IFN-α can induce a quiescent infection similar to latency following 

infection of porcine TG neurons (De Regge et al., 2010). There has even been the 

suggestion that the abundant TNF-α produced at later times p.i. may play some role in 

viral latency due to its role in protecting neurons against excitogenic and oxidative 

damage (Shimeld et al., 1997). 

Central to this is the other noteworthy finding presented in this thesis is that, unlike for all 

other HSV-1 that express Cre from a lytic promoter, the number of β-gal marked cells in 

ROSA26R mice infected with HSV-1 pICP47_eGC continues to rise throughout the 

establishment of latency and beyond, a finding explored in chapter five. This suggests 

ICP47 and/or ICP22 may be expressed especially frequently during the establishment of 

latency. ICP47 acts to inhibit antigen presentation on MHC-I and evade the CD8+ T cell 

response (York et al., 1994), which may not be cytolytic but instead acts to promote the 

establishment of latency. Therefore, expression of ICP47 during latency establishment 

may represent a time of infrequent, abortive attempts at reactivation. ICP22 was first 

identified as a transactivator of viral gene expression, and so activity under this promoter 

seems compatible with reactivation, but ICP22 is only required for the expression of some 

late genes, such as US11, UL44 and UL48 (Long et al., 1999; Rice et al., 1995; Sears et al., 

1985). Rather, ICP22 seems to serve more to limit viral gene expression and modulate the 

host’s transcription machinery (reviewed by Rice and Davido, 2013). As such, the 

expression of a more promiscuous transactivator like ICP4 (DeLuca and Schaffer, 1985; 

Dixon and Schaffer, 1980; Smith et al., 1993), or the multifunctional ICP0 proteins 
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(Everett, 1984; O'Hare and Hayward, 1985), may be more compatible with such a 

hypothesis. However, such a trend was not observed when Proença and colleagues (2008; 

2011) examined the historical activity of the ICP4 and ICP0 promoters in the 

ROSA26R/Cre mouse model. Therefore, it seems that the establishment phase of latency is 

a time of conflicting factors, with some promoting viral infection and even reactivation, 

and others promoting suppression of the viral genome. Further, this phase of infection is 

also influenced by the host’s CD8+ T cell response. 

While the establishment and maintenance of latency is a critical part of the HSV-1 life 

cycle, in order to disseminate the virus to new hosts, reactivation must occur to produce 

and shed infectious virus. Overcoming this initial inhibition that serves to maintain latency 

is important for the progression to productive infection, with reactivation on a neuronal 

level likely to be frequent, but partial (Schiffer et al., 2009). However, there are many 

hurdles that must be surmounted before reactivation occurs. This includes repression of 

viral gene expression by the host, downregulation of viral RNAs such as the LATs, and 

overcoming the various aspects of the host’s immune response, ranging from the intrinsic 

antiviral response through to the role of CD8+ TRM cells in the skin. 

Chromatin-mediated repression of the viral genome is generally effective, but there is low 

level transcription of some viral genes from all regions of the genome in approximately 

two thirds of latently infected neurons (Ma et al., 2014). Therefore, rather than an 

impregnable epigenetic barrier to viral gene expression, there exists a balance of more 

permissive and repressive epigenetic marks that generally favours a repressive 

environment of facultative chromatin in the majority of latently infected neurons (Cliffe et 

al., 2009; Wang et al., 2005b). This is particularly true of the LAT region of the genome, 

which appears to exist in a bivalent state (Kubat et al., 2004a; Kubat et al., 2004b; 

Kwiatkowski et al., 2009). Given that generally a pool of neuronal tissue is used for a ChIP 

assay, it is believed that different viral genomes are associated with different epigenetic 

marks, potentially regulated by the expression of the LATs by an as yet undefined 

mechanism (reviewed by Bloom et al., 2010). However, for productive reactivation to 

occur, chromatin remodelling of the viral genome is an essential early step. Reactivation in 

animal models is followed by a decrease in permissive euchromatic marks on the LAT 

region and a subsequent increase in RNA abundance and euchromatic marks on other 

areas of the viral genome (Amelio et al., 2006a; Creech and Neumann, 2010; Neumann et 

al., 2007a). 

The removal of repressive epigenetic marks on the histones associated with the viral 

genome is closely linked with the initiation of productive viral gene expression following 
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reactivation. The actions of one or more transactivators have been implicated in initiating 

the cascade of viral lytic gene expression after reactivation is triggered (Halford et al., 

2001), but the importance of different proteins is unknown. Of particular interest are 

VP16 and ICP0, due to their dual roles in the transactivation of lytic gene expression and in 

chromatin remodelling (Coleman et al., 2008; Ferenczy and DeLuca, 2011; Herrera and 

Triezenberg, 2004; Thompson et al., 2009), providing an attractive link between 

epigenetic derepression of the viral genome and activation of gene expression. However, 

as yet no clear mechanism has been elucidated. The most likely explanation is that viral 

gene expression is biphasic, with an initial disordered stage of viral lytic gene expression 

(Du et al., 2015; Kim et al., 2012). This disordered expression is likely to be ongoing, 

corresponding to the low level viral gene transcription detected throughout latency (Ma et 

al., 2014). This is followed by more widespread derepression of the viral genome that 

leads to the expression of the viral lytic gene expression cascade (Kim et al., 2012), 

possibly facilitated by key transactivators like VP16.  

Concurrent with the initiation of viral lytic gene expression following reactivation is the 

downregulation of LATs and the short non-coding RNAs encoded within, as well as the 

various miRNAs associated with the latent infection (Du et al., 2015; Du et al., 2011). 

Although a mechanism remains to be defined, LATs play a role in regulating the expression 

of lytic viral genes throughout latency (Chen et al., 1997; Garber et al., 1997; Giordani et 

al., 2008; Maillet et al., 2006), probably by modulating chromatin (Cliffe et al., 2009; 

Kwiatkowski et al., 2009; Wang et al., 2005b). LATs also contain short noncoding RNAs 

that can inhibit apoptosis and the production of infectious virus, thereby mediating 

reactivation (Peng et al., 2008; Perng et al., 2002; Perng et al., 2000b; Shen et al., 2009). 

Likewise, although miRNA expression is not essential for the maintenance of latency, they 

may still have an important role (Du et al., 2015; Kramer et al., 2011). It has been shown 

that the abrogation of miR-H2 expression leads to an increase in ICP0 expression and a 

slightly increased rate of reactivation, while stimulating miR-H6 can downregulate ICP4 

expression (Jurak et al., 2014; Umbach et al., 2008; Umbach et al., 2009). 

It is probable that the expression of viral genes and the modulation of chromatin occurs 

frequently as the virus attempts to reactivate, but this viral activity is not undetectable by 

neurons. Intrinsic antiviral immune responses occur during the acute HSV-1 infection, but 

they are generally insufficient to counter viral replication (Lilley et al., 2011; Rosato and 

Leib, 2014). These responses includes cellular innate immune mechanisms, such as 

autophagy, and mechanisms to repression of viral replication and transcription, mainly 

mediated through nuclear domain 10 proteins (Everett et al., 2006; Lilley et al., 2011; 

Lukashchuk and Everett, 2010; Yordy et al., 2012). Further, latent infection alters the 
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transcriptional profile of the ganglia as a whole, with alterations in expression level of 

multiple genes involved in immune responses in particular, but also cellular metabolism 

and neuronal physiology (Clement et al., 2008; Kent and Fraser, 2005; Kramer et al., 

2003). Similarly, changes in cellular gene expression also occur in induced reactivation 

models of HSV-1 infection (Higaki et al., 2004; Hill et al., 2001; Kent and Fraser, 2005), 

although in both cases the interpretation of these results is difficult due to the relatively 

small population of neurons within the ganglia that are infected. Finally, there is also 

evidence that neuronal functions may help to maintain latency, such as by NGF signaling 

through receptor tyrosine kinases (Camarena et al., 2010; Kristie et al., 1999). Therefore, it 

is reasonable that an intrinsic antiviral response may act to counter reactivation and 

maintain latency. Some of the first evidence of this was provided by Ma and colleagues 

(2014), who found evidence that the expression of even low numbers of lytic viral 

transcripts during latency resulted in a modulation of the host cell’s gene expression 

associated with antiviral activity and cell survival. The neuron seems to be acting to block 

these reactivation attempts (Ma et al., 2014), and therefore overwhelming this intrinsic 

antiviral response is likely to be important an important step towards reactivation. 

Beyond the cell intrinsic immune response, activated CD8+ T cells are retained within the 

DRG of both humans and mice, and are able to control virion release within a localised 

area (Khanna et al., 2003; Theil et al., 2003a; Verjans et al., 2007). The retention of these 

cells within DRG in an activated state suggests the expression of antigen (Van Lint et al., 

2005). This antigen is likely to be expressed only at a low level, especially compared to the 

frequency by which viral transcription occurs during latency. The level of antigen is likely 

too low for the activation and recruitment of circulating CD8+ T cells (Kurts et al., 1999), 

but sufficient to maintain activation of those cells retained within the DRG. Although this 

could represent an aborted reactivation attempt, it may also be an integral part of HSV-1 

latency. Evidence presented in this thesis shows that activity of the ICP6 and gB promoters 

occurs during latency that can lead to protein production, which the neuron is able to 

survive, despite the retention of ICP6 and gB-specific CD8+ T cells in the DRG (Khanna et 

al., 2003; Sheridan et al., 2009; St. Leger et al., 2013; St. Leger et al., 2011). The failure to 

detect this accumulation of β-gal marked neurons in the ROSA26R/Cre mouse model when 

promoters for the viral transactivators like ICP0, ICP4 or VP16 were used (Proença et al., 

2008; Proença et al., 2011) argues against this activity representing attempted 

reactivation by the virus that is aborted by responding cytotoxic CD8+ T cells leading to the 

death of the neuron. It is more consistent with the model proposed by Liu and colleagues 

(2001; 2000) where CD8+ T cells act to prevent possible reactivation without the death of 

the latently infected neuron to help maintain latency. They showed that withdrawal of 
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CD8+ T cells, and the IFN-γ they produce, from latently infected TG cultures can mediate 

reactivation. Conversely, the addition of exogenous HSV-1 or gB498 specific CD8+ T cells can 

restrict viral replication and cytopathic effect, although viral DNA, and immediate early 

and early transcripts were still detectable (Liu et al., 2001; Liu et al., 2000). Related to this 

is the model described by Knickelbein and colleagues (2008) where CD8+ T cells act by a 

non-cytotoxic, but at least partially gzmB-dependent, mechanism to help maintain latency. 

Similarly, it has been found that gzmB+ CD8+ T cells are found within the TG of HSV-1 

infected humans in the absence of detectable neuronal damage (Theil et al., 2003a; Verjans 

et al., 2007). Evidence is also presented in this thesis showing that ICP47 promoter activity 

leading to the production of viral protein can occur during latency. Given the role of ICP47 

in inhibiting TAP (Früh et al., 1995; Hill et al., 1995) expression of this protein during 

latency may be critical for progression to reactivation, especially in the context of the low 

MHC-I expression on neurons. Overall, this suggests that the expression of low levels of 

antigen may be a part of a non-progressing latent infection, but overcoming this CD8+ T 

cell response at the neuron, possibly through ICP47, is an important hurdle that must be 

overcome on the path to reactivation. 

If the virus manages to derepress the viral genome and initiate viral gene expression, 

downregulate expression of the LATs and miRNAs, evade the localised CD8+ T cell 

response within the ganglion and produce virions within the neuron, it will still face a 

robust immune response at the skin surface, with emerging lesions often controlled within 

24 hours as shown by the presence of viral shedding from the skin (Mark et al., 2008). 

CD8+ TRM cells found lodged in the skin play a crucial role in preventing reactivation, acting 

as a form of immune surveillance (Gebhardt et al., 2009; Gebhardt et al., 2011; Mackay et 

al., 2012). This is most clearly demonstrated by the presence of CD8αα+ T cells in the skin 

of humans infected with HSV-2, which closely resemble the TRM CD8+ T cells identified in 

mice. The presence of these CD8αα+ T cells was found to be correlated with increased 

virus control (Schiffer et al., 2010; Zhu et al., 2007; Zhu et al., 2013). Other CD8+ TEM cells 

can also be recruited from circulation to counter viral reactivation, in addition to CD4+ T 

cells, innate effectors and APCs (Donaghy et al., 2009; Zhu et al., 2007). These cells have 

direct cytotoxic action against newly infected cells in the skin, and produce antiviral 

cytokines (Zhu et al., 2007; Zhu et al., 2013). Finally, if this peripheral immunity is 

overcome, the neuronal infection of the epithelial cells will lead to productive, potentially 

symptomatic, reactivation (Schiffer et al., 2010). Given the multiple hurdles HSV-1 has to 

overcome before reactivation occurs, it is unsurprising that recrudescence is relatively 

infrequent. 
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More than a decade ago now, Wagner and Bloom (1997) asked the question of whether 

HSV-1 latency provides a complete model for alphaherpesvirus latent infection and 

reactivation. HSV-1 was long been viewed as the prototypic latent virus, with an almost-

quiescent infection established. However, lately, less restrictive, more complex models are 

gaining favour, which consider the many factors that drive HSV-1 latency. The absence of 

lytic viral transcription is no longer considered to be a hallmark of HSV-1 latency, with 

multiple reports detailing the detection of lytic transcripts from all regions of the genome 

during latency of both mice and humans (Chen et al., 2002a; Chen et al., 1997; Derfuss et 

al., 2009; Derfuss et al., 2007; Feldman et al., 2002; Kramer and Coen, 1995; Kramer et al., 

1998; Ma et al., 2014; Maillet et al., 2006; Pesola et al., 2005; Tal-Singer et al., 1997). This 

correlates better with the paradigm of VZV latency, in which viral transcripts for up to 12 

genes are detectable in human tissue, usually TG, as detected by ISH or RT-qPCR (Cohrs et 

al., 1996; Cohrs et al., 2003; Kennedy et al., 2000; Nagel et al., 2011). Interestingly, while 

the explant of human TG results in reactivation of HSV-1 but not VZV (Baringer and 

Swoveland, 1973; Plotkin et al., 1977), only IE63 transcripts are detectable in tissue 

removed and processed from nine hours of death, suggesting that these transcripts are 

expressed during latency (Ouwendijk et al., 2012). To extend this even further by 

considering all herpesviruses, the role of viral transcription during latency is considered 

necessary to ensure the genome is maintained in dividing cells, while evading the host’s 

immune response and preventing apoptosis (as reviewed by Speck and Ganem, 2010; 

Wagner and Bloom, 1997). It has long been assumed that the site of HSV-1 latency within 

the nucleus of non-dividing sensory neurons precluded the need for such viral activity 

(Wagner and Bloom, 1997). However, HSV-1 may act to both evade the host’s immune 

response, potentially through the action of ICP47 as discussed in this thesis, and can 

prevent apoptosis during latency through the action of the LATs (Perng et al., 2000b). 

While clearly the herpesviruses are a diverse group of viruses with many unique strategies 

that they employ for latency establishment, maintenance and reactivation, in a broader 

sense, HSV-1 can no longer be considered unique due to the almost global repression of its 

genome and lack of transcription – rather, at least in regards to transcriptional activity 

during latency, it exists on the more repressive end of the spectrum of the herpesviruses.  

As such, parallels may be able to be drawn between viral transcription and protein 

production during VZV latency and HSV-1 latency. In the context of HSV-1, such activity is 

thought to maintain the host’s virus specific CD8+ T cell response within the DRG, so a 

similar mechanism may be responsible for the maintenance of latency operates in those 

latently infected with VZV. Clearly there is an important role for the cell-mediated immune 

response in controlling both viral infections, but the nature of this interaction is different 
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in the context of these two infections (Mori and Nishiyama, 2005). The host’s immune 

response is thought to be important for maintaining VZV latency, with clinical disease 

resulting from a failure of this immunity with age (Kinchington, 1999; Levin et al., 2003). 

By contrast, episodes of HSV-1 recrudescence tend to decrease with age (Benedetti et al., 

1999). Similarly, VZV-reactive T cells are not retained within ganglia (Verjans et al., 2007), 

but activated HSV-reactive T cells are retained within latently infected sensory ganglia and 

act to control HSV-1 virion release within the ganglia and prevent viral reactivation 

(Khanna et al., 2003; Liu et al., 2001; Liu et al., 2000). Further, despite often infecting the 

same sensory ganglia or even the same neuron in humans (Cohrs et al., 2005; Cohrs et al., 

2000; Theil et al., 2003b; Verjans et al., 2007), reactivation results from different stimuli 

through different molecular pathways (Kinchington, 1999). Clearly then, there are still 

notable differences between VZV and HSV-1 infection. Others also include substantial 

differences in pathogenesis of these viruses, the lack of conservation of the LATs, and the 

severe host range restriction of VZV (Cohen, 2010; as reviewed by Kennedy et al., 2015b; 

as reviewed by Kinchington, 1999; Weller and Stoddard, 1952). Therefore, although the 

concept that HSV-1 is unique as the prototypic silent herpesvirus is clearly outdated, there 

is still value in comparing the mechanistic basis of latency for different herpesviruses. 

To summarise, this thesis investigated the spread of virus during the establishment of 

latency using the ROSA26R/Cre mouse model, finding evidence that the spread of virus 

occurs beyond the acute infection as defined by the presence of infectious virus, an often 

neglected phase of infection. Results presented in this thesis indicate viral lytic promoter 

activity during latency occurs that can lead to viral protein production, and implicate a 

means by which the virus interacts with the host’s immune response during latency. Since 

the neuron, host immune response and HSV-1 are inextricably linked (Divito et al., 2006), 

multiple, apparently conflicting, hypotheses mask the fact that it is likely that no one factor 

is responsible for establishing, maintaining or reactivating from latency. Rather, there are 

multiple layers of reactivation that must be overcome to facilitate reactivation, but the 

final outcome, namely viral shedding at the surface and disease presence, is relatively rare. 

Given this complexity, further research is required, particularly at the interface between 

the immune response and the virus during latency, to further understand HSV-1 and α-

herpesvirus latency, hopefully leading to better therapeutic outcomes.  
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